Source code for amrex.space3d.amrex_3d_pybind

"""

amrex
-----
.. currentmodule:: amrex

.. autosummary::
   :toctree: _generate
   AmrInfo
   AmrMesh
   Arena
   ArrayOfStructs
   Box
   RealBox
   BoxArray
   Dim3
   FArrayBox
   iMultiFab
   IntVect
   IndexType
   RealVect
   MFInfo
   MFItInfo
   MultiFab
   ParallelDescriptor
   Particle
   ParmParse
   ParticleTile
   ParticleContainer
   Periodicity
   PlotFileUtil
   PODVector
   SmallMatrix
   StructOfArrays
   Utility
   Vector
   VisMF

"""

from __future__ import annotations

import collections.abc
import enum
import typing

import numpy
import numpy.typing

from . import ParallelDescriptor

__all__: list[str] = [
    "AMReX",
    "AlmostEqual",
    "AmrInfo",
    "AmrMesh",
    "Arena",
    "Array4_cdouble",
    "Array4_cdouble_const",
    "Array4_cfloat",
    "Array4_cfloat_const",
    "Array4_double",
    "Array4_double_const",
    "Array4_float",
    "Array4_float_const",
    "Array4_int",
    "Array4_int_const",
    "Array4_long",
    "Array4_long_const",
    "Array4_longdouble",
    "Array4_longdouble_const",
    "Array4_longlong",
    "Array4_longlong_const",
    "Array4_short",
    "Array4_short_const",
    "Array4_uint",
    "Array4_uint_const",
    "Array4_ulong",
    "Array4_ulong_const",
    "Array4_ulonglong",
    "Array4_ulonglong_const",
    "Array4_ushort",
    "Array4_ushort_const",
    "ArrayOfStructs_16_4_arena",
    "ArrayOfStructs_16_4_default",
    "ArrayOfStructs_16_4_pinned",
    "ArrayOfStructs_2_1_arena",
    "ArrayOfStructs_2_1_default",
    "ArrayOfStructs_2_1_pinned",
    "BaseFab_Real",
    "Box",
    "BoxArray",
    "Config",
    "CoordSys",
    "Dim3",
    "Direction",
    "DistributionMapping",
    "FArrayBox",
    "FabArrayBase",
    "FabArray_FArrayBox",
    "FabArray_IArrayBox",
    "FabFactory_FArrayBox",
    "FabFactory_IArrayBox",
    "Geometry",
    "GeometryData",
    "IndexType",
    "IntVect",
    "IntVect1D",
    "IntVect2D",
    "IntVect3D",
    "MFInfo",
    "MFItInfo",
    "MFIter",
    "MPMD_AppNum",
    "MPMD_Copier",
    "MPMD_Finalize",
    "MPMD_Initialize_without_split",
    "MPMD_Initialized",
    "MPMD_MyProc",
    "MPMD_MyProgId",
    "MPMD_NProcs",
    "MultiFab",
    "PODVector_int_arena",
    "PODVector_int_pinned",
    "PODVector_int_std",
    "PODVector_real_arena",
    "PODVector_real_pinned",
    "PODVector_real_std",
    "PODVector_uint64_arena",
    "PODVector_uint64_pinned",
    "PODVector_uint64_std",
    "ParConstIterBase_16_4_0_0_arena",
    "ParConstIterBase_16_4_0_0_default",
    "ParConstIterBase_16_4_0_0_pinned",
    "ParConstIterBase_2_1_3_1_arena",
    "ParConstIterBase_2_1_3_1_default",
    "ParConstIterBase_2_1_3_1_pinned",
    "ParConstIterBase_pureSoA_3_0_arena",
    "ParConstIterBase_pureSoA_3_0_default",
    "ParConstIterBase_pureSoA_3_0_pinned",
    "ParConstIterBase_pureSoA_7_0_arena",
    "ParConstIterBase_pureSoA_7_0_default",
    "ParConstIterBase_pureSoA_7_0_pinned",
    "ParConstIterBase_pureSoA_8_0_arena",
    "ParConstIterBase_pureSoA_8_0_default",
    "ParConstIterBase_pureSoA_8_0_pinned",
    "ParConstIter_16_4_0_0_arena",
    "ParConstIter_16_4_0_0_default",
    "ParConstIter_16_4_0_0_pinned",
    "ParConstIter_2_1_3_1_arena",
    "ParConstIter_2_1_3_1_default",
    "ParConstIter_2_1_3_1_pinned",
    "ParConstIter_pureSoA_3_0_arena",
    "ParConstIter_pureSoA_3_0_default",
    "ParConstIter_pureSoA_3_0_pinned",
    "ParConstIter_pureSoA_7_0_arena",
    "ParConstIter_pureSoA_7_0_default",
    "ParConstIter_pureSoA_7_0_pinned",
    "ParConstIter_pureSoA_8_0_arena",
    "ParConstIter_pureSoA_8_0_default",
    "ParConstIter_pureSoA_8_0_pinned",
    "ParIterBase_16_4_0_0_arena",
    "ParIterBase_16_4_0_0_default",
    "ParIterBase_16_4_0_0_pinned",
    "ParIterBase_2_1_3_1_arena",
    "ParIterBase_2_1_3_1_default",
    "ParIterBase_2_1_3_1_pinned",
    "ParIterBase_pureSoA_3_0_arena",
    "ParIterBase_pureSoA_3_0_default",
    "ParIterBase_pureSoA_3_0_pinned",
    "ParIterBase_pureSoA_7_0_arena",
    "ParIterBase_pureSoA_7_0_default",
    "ParIterBase_pureSoA_7_0_pinned",
    "ParIterBase_pureSoA_8_0_arena",
    "ParIterBase_pureSoA_8_0_default",
    "ParIterBase_pureSoA_8_0_pinned",
    "ParIter_16_4_0_0_arena",
    "ParIter_16_4_0_0_default",
    "ParIter_16_4_0_0_pinned",
    "ParIter_2_1_3_1_arena",
    "ParIter_2_1_3_1_default",
    "ParIter_2_1_3_1_pinned",
    "ParIter_pureSoA_3_0_arena",
    "ParIter_pureSoA_3_0_default",
    "ParIter_pureSoA_3_0_pinned",
    "ParIter_pureSoA_7_0_arena",
    "ParIter_pureSoA_7_0_default",
    "ParIter_pureSoA_7_0_pinned",
    "ParIter_pureSoA_8_0_arena",
    "ParIter_pureSoA_8_0_default",
    "ParIter_pureSoA_8_0_pinned",
    "ParallelDescriptor",
    "ParmParse",
    "ParticleContainer_16_4_0_0_arena",
    "ParticleContainer_16_4_0_0_default",
    "ParticleContainer_16_4_0_0_pinned",
    "ParticleContainer_2_1_3_1_arena",
    "ParticleContainer_2_1_3_1_default",
    "ParticleContainer_2_1_3_1_pinned",
    "ParticleContainer_pureSoA_3_0_arena",
    "ParticleContainer_pureSoA_3_0_default",
    "ParticleContainer_pureSoA_3_0_pinned",
    "ParticleContainer_pureSoA_7_0_arena",
    "ParticleContainer_pureSoA_7_0_default",
    "ParticleContainer_pureSoA_7_0_pinned",
    "ParticleContainer_pureSoA_8_0_arena",
    "ParticleContainer_pureSoA_8_0_default",
    "ParticleContainer_pureSoA_8_0_pinned",
    "ParticleInitType_16_4_0_0",
    "ParticleInitType_2_1_3_1",
    "ParticleInitType_pureSoA_3_0",
    "ParticleInitType_pureSoA_7_0",
    "ParticleInitType_pureSoA_8_0",
    "ParticleTileData_16_4_0_0",
    "ParticleTileData_2_1_3_1",
    "ParticleTileData_pureSoA_3_0",
    "ParticleTileData_pureSoA_7_0",
    "ParticleTileData_pureSoA_8_0",
    "ParticleTile_16_4_0_0_arena",
    "ParticleTile_16_4_0_0_default",
    "ParticleTile_16_4_0_0_pinned",
    "ParticleTile_2_1_3_1_arena",
    "ParticleTile_2_1_3_1_default",
    "ParticleTile_2_1_3_1_pinned",
    "ParticleTile_pureSoA_3_0_arena",
    "ParticleTile_pureSoA_3_0_default",
    "ParticleTile_pureSoA_3_0_pinned",
    "ParticleTile_pureSoA_7_0_arena",
    "ParticleTile_pureSoA_7_0_default",
    "ParticleTile_pureSoA_7_0_pinned",
    "ParticleTile_pureSoA_8_0_arena",
    "ParticleTile_pureSoA_8_0_default",
    "ParticleTile_pureSoA_8_0_pinned",
    "Particle_16_4",
    "Particle_2_1",
    "Particle_3_0",
    "Particle_5_2",
    "Particle_7_0",
    "Particle_8_0",
    "Periodicity",
    "PlotFileData",
    "RealBox",
    "RealVect",
    "SmallMatrix_1x6_F_SI1_double",
    "SmallMatrix_1x6_F_SI1_float",
    "SmallMatrix_1x6_F_SI1_longdouble",
    "SmallMatrix_6x1_F_SI1_double",
    "SmallMatrix_6x1_F_SI1_float",
    "SmallMatrix_6x1_F_SI1_longdouble",
    "SmallMatrix_6x6_F_SI1_double",
    "SmallMatrix_6x6_F_SI1_float",
    "SmallMatrix_6x6_F_SI1_longdouble",
    "StructOfArrays_0_0_arena",
    "StructOfArrays_0_0_default",
    "StructOfArrays_0_0_pinned",
    "StructOfArrays_3_0_idcpu_arena",
    "StructOfArrays_3_0_idcpu_default",
    "StructOfArrays_3_0_idcpu_pinned",
    "StructOfArrays_3_1_arena",
    "StructOfArrays_3_1_default",
    "StructOfArrays_3_1_pinned",
    "StructOfArrays_7_0_idcpu_arena",
    "StructOfArrays_7_0_idcpu_default",
    "StructOfArrays_7_0_idcpu_pinned",
    "StructOfArrays_8_0_idcpu_arena",
    "StructOfArrays_8_0_idcpu_default",
    "StructOfArrays_8_0_idcpu_pinned",
    "The_Arena",
    "The_Async_Arena",
    "The_Cpu_Arena",
    "The_Device_Arena",
    "The_Managed_Arena",
    "The_Pinned_Arena",
    "Vector_Box",
    "Vector_BoxArray",
    "Vector_DistributionMapping",
    "Vector_Geometry",
    "Vector_IntVect",
    "Vector_Long",
    "Vector_Real",
    "Vector_int",
    "Vector_string",
    "VisMF",
    "XDim3",
    "almost_equal",
    "begin",
    "coarsen",
    "concatenate",
    "copy_mfab",
    "dtoh_memcpy",
    "end",
    "finalize",
    "htod_memcpy",
    "iMultiFab",
    "initialize",
    "initialize_when_MPMD",
    "initialized",
    "is_valid",
    "lbound",
    "length",
    "make_invalid",
    "make_valid",
    "max",
    "min",
    "pack_cpus",
    "pack_ids",
    "refine",
    "size",
    "ubound",
    "unpack_cpus",
    "unpack_ids",
    "write_single_level_plotfile",
]

[docs] class AMReX:
[docs] @staticmethod def empty() -> bool: ...
[docs] @staticmethod def erase(arg0: AMReX) -> None: ...
[docs] @staticmethod def size() -> int: ...
[docs] @staticmethod def top() -> AMReX: ...
[docs] class AmrInfo: check_input: bool iterate_on_new_grids: bool refine_grid_layout: bool refine_grid_layout_dims: IntVect3D use_fixed_coarse_grids: bool use_new_chop: bool def __init__(self) -> None: ... def __repr__(self) -> str: ...
[docs] def blocking_factor(self, arg0: typing.SupportsInt) -> IntVect3D: ...
[docs] def max_grid_size(self, arg0: typing.SupportsInt) -> IntVect3D: ...
[docs] def n_error_buf(self, arg0: typing.SupportsInt) -> IntVect3D: ...
[docs] def ref_ratio(self, arg0: typing.SupportsInt) -> IntVect3D: ...
@property def grid_eff(self) -> float: ... @grid_eff.setter def grid_eff(self, arg0: typing.SupportsFloat) -> None: ... @property def max_level(self) -> int: ... @max_level.setter def max_level(self, arg0: typing.SupportsInt) -> None: ... @property def n_proper(self) -> int: ... @n_proper.setter def n_proper(self, arg0: typing.SupportsInt) -> None: ... @property def use_fixed_upto_level(self) -> int: ... @use_fixed_upto_level.setter def use_fixed_upto_level(self, arg0: typing.SupportsInt) -> None: ... @property def verbose(self) -> int: ... @verbose.setter def verbose(self, arg0: typing.SupportsInt) -> None: ...
[docs] class AmrMesh: @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, rb: RealBox, max_level_in: typing.SupportsInt, n_cell_in: Vector_int, coord: typing.SupportsInt, ref_ratios: Vector_IntVect, is_per: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> None: ... def __repr__(self) -> str: ... @typing.overload def ref_ratio(self) -> Vector_IntVect: ... @typing.overload def ref_ratio(self, arg0: typing.SupportsInt) -> IntVect3D: ... @property def finest_level(self) -> int: ... @property def max_level(self) -> int: ... @property def verbose(self) -> int: ...
[docs] class Arena:
[docs] @staticmethod def finalize() -> None: ...
[docs] @staticmethod def initialize(arg0: bool) -> None: ...
[docs] @staticmethod def print_usage(arg0: bool) -> None: ...
[docs] @staticmethod def print_usage_to_files(filename: str, message: str) -> None: ...
[docs] def has_free_device_memory(self, sz: typing.SupportsInt) -> bool: """ Does the device have enough free memory for allocating this much memory? For CPU builds, this always return true. """
@property def is_device(self) -> bool: ... @property def is_device_accessible(self) -> bool: ... @property def is_host_accessible(self) -> bool: ... @property def is_managed(self) -> bool: ... @property def is_pinned(self) -> bool: ...
class Array4_cdouble: @typing.overload def __getitem__(self, arg0: IntVect3D) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> complex: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_cdouble) -> None: ... @typing.overload def __init__(self, arg0: Array4_cdouble, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_cdouble, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.complex128] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: complex) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: complex, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: complex, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.complex128]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_cdouble_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> complex: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_cdouble_const) -> None: ... @typing.overload def __init__( self, arg0: Array4_cdouble_const, arg1: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: Array4_cdouble_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, complex] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.complex128]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_cfloat: @typing.overload def __getitem__(self, arg0: IntVect3D) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> complex: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_cfloat) -> None: ... @typing.overload def __init__(self, arg0: Array4_cfloat, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_cfloat, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.complex64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: complex) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: complex, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: complex, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.complex64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_cfloat_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> complex: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> complex: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_cfloat_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_cfloat_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_cfloat_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, complex] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.complex64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ...
[docs] class Array4_double: @typing.overload def __getitem__(self, arg0: IntVect3D) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_double) -> None: ... @typing.overload def __init__(self, arg0: Array4_double, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_double, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsFloat) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ...
[docs] def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_host(self) -> numpy.typing.NDArray[numpy.float64]: ...
[docs] def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """
[docs] def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ...
class Array4_double_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_double_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_double_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_double_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.float64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_float: @typing.overload def __getitem__(self, arg0: IntVect3D) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_float) -> None: ... @typing.overload def __init__(self, arg0: Array4_float, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_float, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsFloat) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.float32]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_float_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_float_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_float_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_float_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.float32]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_int: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_int) -> None: ... @typing.overload def __init__(self, arg0: Array4_int, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_int, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int32] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int32]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_int_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_int_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_int_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_int_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int32] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int32]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_long: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_long) -> None: ... @typing.overload def __init__(self, arg0: Array4_long, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_long, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_long_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_long_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_long_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_long_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_longdouble: @typing.overload def __getitem__(self, arg0: IntVect3D) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_longdouble) -> None: ... @typing.overload def __init__(self, arg0: Array4_longdouble, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_longdouble, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.longdouble] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsFloat) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.longdouble]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_longdouble_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_longdouble_const) -> None: ... @typing.overload def __init__( self, arg0: Array4_longdouble_const, arg1: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: Array4_longdouble_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.longdouble] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.longdouble]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_longlong: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_longlong) -> None: ... @typing.overload def __init__(self, arg0: Array4_longlong, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_longlong, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_longlong_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_longlong_const) -> None: ... @typing.overload def __init__( self, arg0: Array4_longlong_const, arg1: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: Array4_longlong_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_short: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_short) -> None: ... @typing.overload def __init__(self, arg0: Array4_short, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_short, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int16] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int16]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_short_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_short_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_short_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_short_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int16] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.int16]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_uint: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_uint) -> None: ... @typing.overload def __init__(self, arg0: Array4_uint, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_uint, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint32] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint32]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_uint_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_uint_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_uint_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_uint_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint32] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint32]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_ulong: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulong) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulong, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_ulong, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_ulong_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulong_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulong_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_ulong_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_ulonglong: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulonglong) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulonglong, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_ulonglong, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_ulonglong_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_ulonglong_const) -> None: ... @typing.overload def __init__( self, arg0: Array4_ulonglong_const, arg1: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: Array4_ulonglong_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint64]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_ushort: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_ushort) -> None: ... @typing.overload def __init__(self, arg0: Array4_ushort, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_ushort, arg1: typing.SupportsInt, arg2: typing.SupportsInt ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint16] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], arg1: typing.SupportsInt, ) -> None: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint16]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class Array4_ushort_const: @typing.overload def __getitem__(self, arg0: IntVect3D) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> int: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Array4_ushort_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_ushort_const, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: Array4_ushort_const, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint16] ) -> None: ... def __repr__(self) -> str: ... @typing.overload def contains( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> bool: ... @typing.overload def contains(self, arg0: IntVect3D) -> bool: ... @typing.overload def contains(self, arg0: Dim3) -> bool: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy n-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> numpy.typing.NDArray[numpy.uint16]: ... def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an Array4. This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy n-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into an Array4, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of the box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.Array4_* An Array4 class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy n-dimensional array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def nComp(self) -> int: ... @property def num_comp(self) -> int: ... @property def size(self) -> int: ... class ArrayOfStructs_16_4_arena: @staticmethod def test_sizes() -> None: ... def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def back(self) -> Particle_16_4: """ get back member. Problem!!!!! this is perfo """ @typing.overload def empty(self) -> bool: ... @typing.overload def empty(self) -> bool: ... def getNumNeighbors(self) -> int: ... def numNeighborParticles(self) -> int: ... def numParticles(self) -> int: ... def numRealParticles(self) -> int: ... def numTotalParticles(self) -> int: ... def pop_back(self) -> None: ... def push_back(self, arg0: Particle_16_4) -> None: ... def setNumNeighbors(self, arg0: typing.SupportsInt) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide CuPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> ArrayOfStructs_16_4_pinned: ... def to_numpy(self, copy=False): """ Provide NumPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a ArrayOfStructs, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy or CuPy arrays. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class ArrayOfStructs_16_4_default: @staticmethod def test_sizes() -> None: ... def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def back(self) -> Particle_16_4: """ get back member. Problem!!!!! this is perfo """ @typing.overload def empty(self) -> bool: ... @typing.overload def empty(self) -> bool: ... def getNumNeighbors(self) -> int: ... def numNeighborParticles(self) -> int: ... def numParticles(self) -> int: ... def numRealParticles(self) -> int: ... def numTotalParticles(self) -> int: ... def pop_back(self) -> None: ... def push_back(self, arg0: Particle_16_4) -> None: ... def setNumNeighbors(self, arg0: typing.SupportsInt) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide CuPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> ArrayOfStructs_16_4_pinned: ... def to_numpy(self, copy=False): """ Provide NumPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a ArrayOfStructs, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy or CuPy arrays. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class ArrayOfStructs_16_4_pinned: @staticmethod def test_sizes() -> None: ... def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def back(self) -> Particle_16_4: """ get back member. Problem!!!!! this is perfo """ @typing.overload def empty(self) -> bool: ... @typing.overload def empty(self) -> bool: ... def getNumNeighbors(self) -> int: ... def numNeighborParticles(self) -> int: ... def numParticles(self) -> int: ... def numRealParticles(self) -> int: ... def numTotalParticles(self) -> int: ... def pop_back(self) -> None: ... def push_back(self, arg0: Particle_16_4) -> None: ... def setNumNeighbors(self, arg0: typing.SupportsInt) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide CuPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> ArrayOfStructs_16_4_pinned: ... def to_numpy(self, copy=False): """ Provide NumPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a ArrayOfStructs, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy or CuPy arrays. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class ArrayOfStructs_2_1_arena: @staticmethod def test_sizes() -> None: ... def __getitem__(self, arg0: typing.SupportsInt) -> Particle_2_1: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_2_1) -> None: ... def back(self) -> Particle_2_1: """ get back member. Problem!!!!! this is perfo """ @typing.overload def empty(self) -> bool: ... @typing.overload def empty(self) -> bool: ... def getNumNeighbors(self) -> int: ... def numNeighborParticles(self) -> int: ... def numParticles(self) -> int: ... def numRealParticles(self) -> int: ... def numTotalParticles(self) -> int: ... def pop_back(self) -> None: ... def push_back(self, arg0: Particle_2_1) -> None: ... def setNumNeighbors(self, arg0: typing.SupportsInt) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide CuPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> ArrayOfStructs_2_1_pinned: ... def to_numpy(self, copy=False): """ Provide NumPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a ArrayOfStructs, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy or CuPy arrays. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class ArrayOfStructs_2_1_default:
[docs] @staticmethod def test_sizes() -> None: ...
def __getitem__(self, arg0: typing.SupportsInt) -> Particle_2_1: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_2_1) -> None: ...
[docs] def back(self) -> Particle_2_1: """ get back member. Problem!!!!! this is perfo """
@typing.overload def empty(self) -> bool: ... @typing.overload def empty(self) -> bool: ...
[docs] def getNumNeighbors(self) -> int: ...
[docs] def numNeighborParticles(self) -> int: ...
[docs] def numParticles(self) -> int: ...
[docs] def numRealParticles(self) -> int: ...
[docs] def numTotalParticles(self) -> int: ...
[docs] def pop_back(self) -> None: ...
[docs] def push_back(self, arg0: Particle_2_1) -> None: ...
[docs] def setNumNeighbors(self, arg0: typing.SupportsInt) -> None: ...
[docs] def size(self) -> int: ...
[docs] def to_cupy(self, copy=False): """ Provide CuPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_host(self) -> ArrayOfStructs_2_1_pinned: ...
[docs] def to_numpy(self, copy=False): """ Provide NumPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. """
[docs] def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a ArrayOfStructs, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy or CuPy arrays. """
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
class ArrayOfStructs_2_1_pinned: @staticmethod def test_sizes() -> None: ... def __getitem__(self, arg0: typing.SupportsInt) -> Particle_2_1: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_2_1) -> None: ... def back(self) -> Particle_2_1: """ get back member. Problem!!!!! this is perfo """ @typing.overload def empty(self) -> bool: ... @typing.overload def empty(self) -> bool: ... def getNumNeighbors(self) -> int: ... def numNeighborParticles(self) -> int: ... def numParticles(self) -> int: ... def numRealParticles(self) -> int: ... def numTotalParticles(self) -> int: ... def pop_back(self) -> None: ... def push_back(self, arg0: Particle_2_1) -> None: ... def setNumNeighbors(self, arg0: typing.SupportsInt) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide CuPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> ArrayOfStructs_2_1_pinned: ... def to_numpy(self, copy=False): """ Provide NumPy views into a ArrayOfStructs. Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy arrays. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a ArrayOfStructs, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.ArrayOfStructs_* An ArrayOfStructs class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each lists of 1D NumPy or CuPy arrays. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class BaseFab_Real: @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Arena) -> None: ... @typing.overload def __init__(self, arg0: Box, arg1: typing.SupportsInt, arg2: Arena) -> None: ... @typing.overload def __init__( self, arg0: Box, arg1: typing.SupportsInt, arg2: typing.SupportsFloat ) -> None: ... @typing.overload def __init__( self, arg0: Box, arg1: typing.SupportsInt, arg2: typing.SupportsFloat ) -> None: ... @typing.overload def __init__(self, arg0: Array4_double) -> None: ... @typing.overload def __init__(self, arg0: Array4_double, arg1: IndexType) -> None: ... @typing.overload def __init__(self, arg0: Array4_double_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_double_const, arg1: IndexType) -> None: ... def __repr__(self) -> str: ...
[docs] def array(self) -> Array4_double: ...
[docs] def big_end(self) -> IntVect3D: ...
[docs] def box(self) -> Box: ...
[docs] def clear(self) -> None: ...
[docs] def const_array(self) -> Array4_double_const: ...
[docs] def hi_vect(self) -> int: ...
[docs] def is_allocated(self) -> bool: ...
[docs] def length(self) -> IntVect3D: ...
[docs] def lo_vect(self) -> int: ...
@typing.overload def n_bytes(self) -> int: ... @typing.overload def n_bytes(self, arg0: Box, arg1: typing.SupportsInt) -> int: ...
[docs] def n_bytes_owned(self) -> int: ...
[docs] def n_comp(self) -> int: ...
[docs] def num_pts(self) -> int: ...
[docs] def resize(self, arg0: Box, arg1: typing.SupportsInt, arg2: Arena) -> None: ...
[docs] def size(self) -> int: ...
[docs] def small_end(self) -> IntVect3D: ...
[docs] def to_host(self) -> BaseFab_Real: ...
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class Box: big_end: IntVect3D hi_vect: IntVect3D lo_vect: IntVect3D small_end: IntVect3D def __add__(self, arg0: IntVect3D) -> Box: ... def __iadd__(self, arg0: IntVect3D) -> Box: ... @typing.overload def __init__(self, small: IntVect3D, big: IntVect3D) -> None: ... @typing.overload def __init__(self, small: IntVect3D, big: IntVect3D, typ: IntVect3D) -> None: ... @typing.overload def __init__(self, small: IntVect3D, big: IntVect3D, t: IndexType) -> None: ... @typing.overload def __init__( self, small: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], big: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> None: ... @typing.overload def __init__( self, small: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], big: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], t: IndexType, ) -> None: ... def __isub__(self, arg0: IntVect3D) -> Box: ... def __iter__(self) -> collections.abc.Iterator[IntVect3D]: ... def __repr__(self) -> str: ... def __sub__(self, arg0: IntVect3D) -> Box: ...
[docs] def begin(self, box: Box) -> Dim3: ...
[docs] def contains(self, p: IntVect3D) -> bool: """ Returns true if argument is contained within Box. """
@typing.overload def convert(self, typ: IndexType) -> Box: """ Convert the Box from the current type into the argument type. This may change the Box coordinates: type CELL -> NODE : increase coordinate by one on high end type NODE -> CELL : reduce coordinate by one on high end other type mappings make no change. """ @typing.overload def convert(self, typ: IntVect3D) -> Box: """ Convert the Box from the current type into the argument type. This may change the Box coordinates: type CELL -> NODE : increase coordinate by one on high end type NODE -> CELL : reduce coordinate by one on high end other type mappings make no change. """ @typing.overload def enclosed_cells(self) -> Box: """ Convert to CELL type in all directions. """ @typing.overload def enclosed_cells(self, dir: typing.SupportsInt) -> Box: """ Convert to CELL type in given direction. """ @typing.overload def enclosed_cells(self, d: Direction) -> Box: """ Convert to CELL type in given direction. """
[docs] def end(self, box: Box) -> Dim3: ...
@typing.overload def grow(self, n_cell: typing.SupportsInt) -> Box: """ Grow Box in all directions by given amount. NOTE: n_cell negative shrinks the Box by that number of cells. """ @typing.overload def grow(self, n_cells: IntVect3D) -> Box: """ Grow Box in each direction by specified amount. """ @typing.overload def grow(self, idir: typing.SupportsInt, n_cell: typing.SupportsInt) -> Box: """ Grow the Box on the low and high end by n_cell cells in direction idir. """ @typing.overload def grow(self, d: Direction, n_cell: typing.SupportsInt) -> Box: ... @typing.overload def grow_high( self, idir: typing.SupportsInt, n_cell: typing.SupportsInt = 1 ) -> Box: """ Grow the Box on the high end by n_cell cells in direction idir. NOTE: n_cell negative shrinks the Box by that number of cells. """ @typing.overload def grow_high(self, d: Direction, n_cell: typing.SupportsInt = 1) -> Box: ... @typing.overload def grow_low(self, idir: typing.SupportsInt, n_cell: typing.SupportsInt = 1) -> Box: """ Grow the Box on the low end by n_cell cells in direction idir. NOTE: n_cell negative shrinks the Box by that number of cells. """ @typing.overload def grow_low(self, d: Direction, n_cell: typing.SupportsInt = 1) -> Box: ...
[docs] def intersects(self, b: Box) -> bool: """ Returns true if Boxes have non-null intersections. It is an error if the Boxes have different types. """
[docs] def lbound(self, arg0: Box) -> Dim3: ...
@typing.overload def length(self) -> IntVect3D: """ Return IntVect of lengths of the Box """ @typing.overload def length(self, dir: typing.SupportsInt) -> int: """ Return the length of the Box in given direction. """
[docs] def make_slab( self, direction: typing.SupportsInt, slab_index: typing.SupportsInt ) -> Box: """ Flatten the box in one direction. """
[docs] def normalize(self) -> None: ...
[docs] def numPts(self) -> int: """ Return the number of points in the Box. """
[docs] def same_size(self, b: Box) -> bool: """ Returns true is Boxes same size, ie translates of each other,. It is an error if they have different types. """
[docs] def same_type(self, b: Box) -> bool: """ Returns true if Boxes have same type. """
@typing.overload def shift(self, dir: typing.SupportsInt, nzones: typing.SupportsInt) -> Box: """ Shift this Box nzones indexing positions in coordinate direction dir. """ @typing.overload def shift(self, iv: IntVect3D) -> Box: """ Equivalent to b.shift(0,iv[0]).shift(1,iv[1]) ... """
[docs] def strictly_contains(self, p: IntVect3D) -> bool: """ Returns true if argument is strictly contained within Box. """
@typing.overload def surrounding_nodes(self) -> Box: """ Convert to NODE type in all directions. """ @typing.overload def surrounding_nodes(self, dir: typing.SupportsInt) -> Box: """ Convert to NODE type in given direction. """ @typing.overload def surrounding_nodes(self, d: Direction) -> Box: """ Convert to NODE type in given direction. """
[docs] def ubound(self, arg0: Box) -> Dim3: ...
@property def cell_centered(self) -> bool: """ Returns true if Box is cell-centered in all indexing directions. """ @property def d_num_pts(self) -> float: ... @property def is_empty(self) -> bool: ... @property def is_square(self) -> bool: ... @property def ix_type(self) -> IndexType: ... @property def num_pts(self) -> int: ... @property def ok(self) -> bool: ... @property def size(self) -> IntVect3D: ... @property def the_unit_box() -> Box: ... @property def type(self) -> IntVect3D: ... @type.setter def type(self, arg1: IndexType) -> Box: ... @property def volume(self) -> int: ...
[docs] class BoxArray: def __getitem__(self, arg0: typing.SupportsInt) -> Box: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: BoxArray) -> None: ... @typing.overload def __init__(self, arg0: Box) -> None: ... @typing.overload def __init__(self, arg0: Vector_Box) -> None: ... def __repr__(self) -> str: ...
[docs] def cell_equal(self, arg0: BoxArray) -> bool: ...
[docs] def clear(self) -> None: ...
@typing.overload def coarsen(self, arg0: IntVect3D) -> BoxArray: ... @typing.overload def coarsen(self, arg0: typing.SupportsInt) -> BoxArray: ... @typing.overload def coarsenable( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> bool: ... @typing.overload def coarsenable(self, arg0: IntVect3D, arg1: typing.SupportsInt) -> bool: ... @typing.overload def coarsenable(self, arg0: IntVect3D, arg1: IntVect3D) -> bool: ... @typing.overload def convert(self, arg0: IndexType) -> BoxArray: ... @typing.overload def convert(self, arg0: IntVect3D) -> BoxArray: ...
[docs] def define(self, arg0: Box) -> None: ...
@typing.overload def enclosed_cells(self) -> BoxArray: ... @typing.overload def enclosed_cells(self, arg0: typing.SupportsInt) -> BoxArray: ...
[docs] def get(self, arg0: typing.SupportsInt) -> Box: ...
[docs] def ix_type(self) -> IndexType: ...
@typing.overload def max_size(self, arg0: typing.SupportsInt) -> BoxArray: ... @typing.overload def max_size(self, arg0: IntVect3D) -> BoxArray: ...
[docs] def minimal_box(self) -> Box: ...
@typing.overload def refine(self, arg0: typing.SupportsInt) -> BoxArray: ... @typing.overload def refine(self, arg0: IntVect3D) -> BoxArray: ...
[docs] def resize(self, arg0: typing.SupportsInt) -> None: ...
@typing.overload def surroundingNodes(self) -> BoxArray: ... @typing.overload def surroundingNodes(self, arg0: typing.SupportsInt) -> BoxArray: ... @property def capacity(self) -> int: ... @property def d_numPts(self) -> float: ... @property def empty(self) -> bool: ... @property def numPts(self) -> int: ... @property def size(self) -> int: ...
[docs] class Config: amrex_version: typing.ClassVar[str] = "25.10-24-g428537425149" gpu_backend = None have_eb: typing.ClassVar[bool] = True have_gpu: typing.ClassVar[bool] = False have_mpi: typing.ClassVar[bool] = True have_omp: typing.ClassVar[bool] = False have_simd: typing.ClassVar[bool] = False precision: typing.ClassVar[str] = "DOUBLE" precision_particles: typing.ClassVar[str] = "DOUBLE" simd_size: typing.ClassVar[int] = 1 spacedim: typing.ClassVar[int] = 3 verbose: typing.ClassVar[int] = 1
[docs] class CoordSys:
[docs] class CoordType(enum.IntEnum): """ An enumeration. """ RZ: typing.ClassVar[CoordSys.CoordType] # value = <CoordType.RZ: 1> SPHERICAL: typing.ClassVar[ CoordSys.CoordType ] # value = <CoordType.SPHERICAL: 2> cartesian: typing.ClassVar[ CoordSys.CoordType ] # value = <CoordType.cartesian: 0> undef: typing.ClassVar[CoordSys.CoordType] # value = <CoordType.undef: -1>
RZ: typing.ClassVar[CoordSys.CoordType] # value = <CoordType.RZ: 1> SPHERICAL: typing.ClassVar[CoordSys.CoordType] # value = <CoordType.SPHERICAL: 2> cartesian: typing.ClassVar[CoordSys.CoordType] # value = <CoordType.cartesian: 0> undef: typing.ClassVar[CoordSys.CoordType] # value = <CoordType.undef: -1>
[docs] def Coord(self) -> CoordSys.CoordType: ...
[docs] def CoordInt(self) -> int: ...
[docs] def IsCartesian(self) -> bool: ...
[docs] def IsRZ(self) -> bool: ...
[docs] def IsSPHERICAL(self) -> bool: ...
[docs] def SetCoord(self, arg0: CoordSys.CoordType) -> None: ...
@typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: CoordSys) -> None: ... def __repr__(self) -> str: ...
[docs] def ok(self) -> bool: ...
[docs] class Dim3: def __init__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... @property def x(self) -> int: ... @x.setter def x(self, arg0: typing.SupportsInt) -> None: ... @property def y(self) -> int: ... @y.setter def y(self, arg0: typing.SupportsInt) -> None: ... @property def z(self) -> int: ... @z.setter def z(self, arg0: typing.SupportsInt) -> None: ...
[docs] class Direction: pass
[docs] class DistributionMapping:
[docs] def ProcessorMap(self) -> Vector_int: ...
def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: DistributionMapping) -> None: ... @typing.overload def __init__(self, arg0: Vector_int) -> None: ... @typing.overload def __init__(self, boxes: BoxArray) -> None: ... @typing.overload def __init__(self, boxes: BoxArray, nprocs: typing.SupportsInt) -> None: ... def __repr__(self) -> str: ... @typing.overload def define(self, boxes: BoxArray) -> None: ... @typing.overload def define(self, boxes: BoxArray, nprocs: typing.SupportsInt) -> None: ... @typing.overload def define(self, arg0: Vector_int) -> None: ... @property def capacity(self) -> int: ... @property def empty(self) -> bool: ... @property def link_count(self) -> int: ... @property def size(self) -> int: ...
[docs] class FArrayBox(BaseFab_Real): @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Arena) -> None: ... @typing.overload def __init__(self, arg0: Box, arg1: typing.SupportsInt, arg2: Arena) -> None: ... @typing.overload def __init__( self, arg0: Box, arg1: typing.SupportsInt, arg2: bool, arg3: bool, arg4: Arena ) -> None: ... @typing.overload def __init__( self, arg0: Box, arg1: typing.SupportsInt, arg2: typing.SupportsFloat ) -> None: ... @typing.overload def __init__( self, arg0: Box, arg1: typing.SupportsInt, arg2: typing.SupportsFloat ) -> None: ... @typing.overload def __init__(self, arg0: Array4_double) -> None: ... @typing.overload def __init__(self, arg0: Array4_double, arg1: IndexType) -> None: ... @typing.overload def __init__(self, arg0: Array4_double_const) -> None: ... @typing.overload def __init__(self, arg0: Array4_double_const, arg1: IndexType) -> None: ... def __repr__(self) -> str: ...
class FabArrayBase: @staticmethod def __iter__(fab): ... def __len__(self) -> int: """ Return the number of FABs in the FabArray. """ def is_nodal(self, arg0: typing.SupportsInt) -> bool: ... @property def is_all_cell_centered(self) -> bool: ... @property def is_all_nodal(self) -> bool: ... @property def nComp(self) -> int: """ Return number of variables (aka components) associated with each point. """ @property def n_grow_vect(self) -> IntVect3D: """ Return the grow factor (per direction) that defines the region of definition. """ @property def num_comp(self) -> int: """ Return number of variables (aka components) associated with each point. """ @property def size(self) -> int: """ Return the number of FABs in the FabArray. """ class FabArray_FArrayBox(FabArrayBase): @typing.overload def abs( self, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: ... @typing.overload def abs( self, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D ) -> None: ... def array(self, arg0: MFIter) -> Array4_double: ... def clear(self) -> None: ... def const_array(self, arg0: MFIter) -> Array4_double_const: ... @typing.overload def fill_boundary(self, cross: bool = False) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary(self, period: Periodicity, cross: bool = False) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, nghost: IntVect3D, period: Periodicity, cross: bool = False ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, cross: bool = False ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, period: Periodicity, cross: bool = False, ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, period: Periodicity, cross: bool = False, ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ def lin_comb( self, a: typing.SupportsFloat, x: FabArray_FArrayBox, xcomp: typing.SupportsInt, b: typing.SupportsFloat, y: FabArray_FArrayBox, ycomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self = a * x + b * y Parameters ---------- a : float scalar a x : FabArray xcomp : int starting component of x b : float scalar b y : FabArray ycomp : int starting component of y comp : int starting component of self numcomp : int number of components nghost : int number of ghost cells """ def ok(self) -> bool: ... @typing.overload def override_sync(self, period: Periodicity) -> None: """ Synchronize nodal data. The synchronization will override valid regions by the intersecting valid regions with a higher precedence. The smaller the global box index is, the higher precedence the box has. With periodic boundaries, for cells in the same box, those near the lower corner have higher precedence than those near the upper corner. Parameters ---------- scomp : starting component ncomp : number of components period : periodic length if it's non-zero """ @typing.overload def override_sync( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, period: Periodicity ) -> None: """ Synchronize nodal data. The synchronization will override valid regions by the intersecting valid regions with a higher precedence. The smaller the global box index is, the higher precedence the box has. With periodic boundaries, for cells in the same box, those near the lower corner have higher precedence than those near the upper corner. Parameters ---------- scomp : starting component ncomp : number of components period : periodic length if it's non-zero """ def saxpy( self, a: typing.SupportsFloat, x: FabArray_FArrayBox, x_comp: typing.SupportsInt, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self += a * x Parameters ---------- a : scalar a x : FabArray x x_comp : starting component of x comp : starting component of self ncomp : number of components nghost : number of ghost cells """ @typing.overload def set_val(self, val: typing.SupportsFloat) -> None: """ Set all components in the entire region of each FAB to val. """ @typing.overload def set_val( self, val: typing.SupportsFloat, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp to val. Also set the value of nghost boundary cells. """ @typing.overload def set_val( self, val: typing.SupportsFloat, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp to val. Also set the value of nghost boundary cells. """ @typing.overload def set_val( self, val: typing.SupportsFloat, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp, as well as nghost boundary cells, to val, provided they also intersect with the Box region. """ @typing.overload def set_val( self, val: typing.SupportsFloat, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp, as well as nghost boundary cells, to val, provided they also intersect with the Box region. """ def sum(self, comp: typing.SupportsInt, nghost: IntVect3D, local: bool) -> float: """ Returns the sum of component "comp" """ @typing.overload def sum_boundary(self, period: Periodicity, deterministic: bool = False) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ @typing.overload def sum_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, period: Periodicity, deterministic: bool = False, ) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ @typing.overload def sum_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, period: Periodicity, deterministic: bool = False, ) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ @typing.overload def sum_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, dst_nghost: IntVect3D, period: Periodicity, deterministic: bool = False, ) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ def xpay( self, a: typing.SupportsFloat, x: FabArray_FArrayBox, xcomp: typing.SupportsInt, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self = x + a * self Parameters ---------- a : scalar a x : FabArray x x_comp : starting component of x comp : starting component of self ncomp : number of components nghost : number of ghost cells """ @property def arena(self) -> Arena: """ Provides access to the Arena this FabArray was build with. """ @property def factory(self) -> FabFactory_FArrayBox: ... @property def has_EB_fab_factory(self) -> bool: ... class FabArray_IArrayBox(FabArrayBase): @typing.overload def abs( self, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: ... @typing.overload def abs( self, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D ) -> None: ... def array(self, arg0: MFIter) -> Array4_int: ... def clear(self) -> None: ... def const_array(self, arg0: MFIter) -> Array4_int_const: ... @typing.overload def fill_boundary(self, cross: bool = False) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary(self, period: Periodicity, cross: bool = False) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, nghost: IntVect3D, period: Periodicity, cross: bool = False ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, cross: bool = False ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, period: Periodicity, cross: bool = False, ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ @typing.overload def fill_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, period: Periodicity, cross: bool = False, ) -> None: """ Copy on intersection within a FabArray. Data is copied from valid regions to intersecting regions of definition. The purpose is to fill in the boundary regions of each FAB in the FabArray. If cross=true, corner cells are not filled. If the length of periodic is provided, periodic boundaries are also filled. If scomp is provided, this only copies ncomp components starting at scomp. Note that FabArray itself does not contains any periodicity information. FillBoundary expects that its cell-centered version of its BoxArray is non-overlapping. """ def lin_comb( self, a: typing.SupportsInt, x: FabArray_IArrayBox, xcomp: typing.SupportsInt, b: typing.SupportsInt, y: FabArray_IArrayBox, ycomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self = a * x + b * y Parameters ---------- a : float scalar a x : FabArray xcomp : int starting component of x b : float scalar b y : FabArray ycomp : int starting component of y comp : int starting component of self numcomp : int number of components nghost : int number of ghost cells """ def ok(self) -> bool: ... @typing.overload def override_sync(self, period: Periodicity) -> None: """ Synchronize nodal data. The synchronization will override valid regions by the intersecting valid regions with a higher precedence. The smaller the global box index is, the higher precedence the box has. With periodic boundaries, for cells in the same box, those near the lower corner have higher precedence than those near the upper corner. Parameters ---------- scomp : starting component ncomp : number of components period : periodic length if it's non-zero """ @typing.overload def override_sync( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, period: Periodicity ) -> None: """ Synchronize nodal data. The synchronization will override valid regions by the intersecting valid regions with a higher precedence. The smaller the global box index is, the higher precedence the box has. With periodic boundaries, for cells in the same box, those near the lower corner have higher precedence than those near the upper corner. Parameters ---------- scomp : starting component ncomp : number of components period : periodic length if it's non-zero """ def saxpy( self, a: typing.SupportsInt, x: FabArray_IArrayBox, x_comp: typing.SupportsInt, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self += a * x Parameters ---------- a : scalar a x : FabArray x x_comp : starting component of x comp : starting component of self ncomp : number of components nghost : number of ghost cells """ @typing.overload def set_val(self, val: typing.SupportsInt) -> None: """ Set all components in the entire region of each FAB to val. """ @typing.overload def set_val( self, val: typing.SupportsInt, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp to val. Also set the value of nghost boundary cells. """ @typing.overload def set_val( self, val: typing.SupportsInt, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp to val. Also set the value of nghost boundary cells. """ @typing.overload def set_val( self, val: typing.SupportsInt, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp, as well as nghost boundary cells, to val, provided they also intersect with the Box region. """ @typing.overload def set_val( self, val: typing.SupportsInt, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Set the value of num_comp components in the valid region of each FAB in the FabArray, starting at component comp, as well as nghost boundary cells, to val, provided they also intersect with the Box region. """ def sum(self, comp: typing.SupportsInt, nghost: IntVect3D, local: bool) -> int: """ Returns the sum of component "comp" """ @typing.overload def sum_boundary(self, period: Periodicity, deterministic: bool = False) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ @typing.overload def sum_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, period: Periodicity, deterministic: bool = False, ) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ @typing.overload def sum_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, period: Periodicity, deterministic: bool = False, ) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ @typing.overload def sum_boundary( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, dst_nghost: IntVect3D, period: Periodicity, deterministic: bool = False, ) -> None: """ Sum values in overlapped cells. The destination is limited to valid cells. """ def xpay( self, a: typing.SupportsInt, x: FabArray_IArrayBox, xcomp: typing.SupportsInt, comp: typing.SupportsInt, ncomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self = x + a * self Parameters ---------- a : scalar a x : FabArray x x_comp : starting component of x comp : starting component of self ncomp : number of components nghost : number of ghost cells """ @property def arena(self) -> Arena: """ Provides access to the Arena this FabArray was build with. """ @property def factory(self) -> FabFactory_IArrayBox: ... @property def has_EB_fab_factory(self) -> bool: ... class FabFactory_FArrayBox: pass class FabFactory_IArrayBox: pass
[docs] class Geometry(CoordSys): @typing.overload def ProbHi(self, dir: typing.SupportsInt) -> float: """ Get the hi end of the problem domain in specified direction """ @typing.overload def ProbHi(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Get the list of lo ends of the problem domain """
[docs] def ProbLength(self, arg0: typing.SupportsInt) -> float: """ length of problem domain in specified dimension """
@typing.overload def ProbLo(self, dir: typing.SupportsInt) -> float: """ Get the lo end of the problem domain in specified direction """ @typing.overload def ProbLo(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Get the list of lo ends of the problem domain """
[docs] def ProbSize(self) -> float: """ the overall size of the domain """
[docs] def ResetDefaultCoord(self: typing.SupportsInt) -> None: """ Reset default coord of Geometry class with an Array of `int` """
[docs] def ResetDefaultPeriodicity( self: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> None: """ Reset default periodicity of Geometry class with an Array of `int` """
[docs] def ResetDefaultProbDomain(self: RealBox) -> None: """ Reset default problem domain of Geometry class with a `RealBox` """
@typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, dom: Box, rb: RealBox, coord: typing.SupportsInt, is_per: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ...
[docs] def coarsen(self, rr: IntVect3D) -> None: ...
[docs] def data(self) -> GeometryData: """ Returns non-static copy of geometry's stored data """
[docs] def define( self, dom: Box, rb: RealBox, coord: typing.SupportsInt, is_per: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> None: """ Set geometry """
@typing.overload def growNonPeriodicDomain(self, ngrow: IntVect3D) -> Box: ... @typing.overload def growNonPeriodicDomain(self, ngrow: typing.SupportsInt) -> Box: ... @typing.overload def growPeriodicDomain(self, ngrow: IntVect3D) -> Box: ... @typing.overload def growPeriodicDomain(self, ngrow: typing.SupportsInt) -> Box: ...
[docs] def insideRoundOffDomain( self, x: typing.SupportsFloat, y: typing.SupportsFloat, z: typing.SupportsFloat ) -> bool: """ Returns true if a point is inside the roundoff domain. All particles with positions inside the roundoff domain are sure to be mapped to cells inside the Domain() box. Note that the same need not be true for all points inside ProbDomain() """
[docs] def isAllPeriodic(self) -> bool: """ Is domain periodic in all directions? """
[docs] def isAnyPeriodic(self) -> bool: """ Is domain periodic in any direction? """
@typing.overload def isPeriodic(self, arg0: typing.SupportsInt) -> bool: """ Is the domain periodic in the specified direction? """ @typing.overload def isPeriodic(self) -> typing.Annotated[list[int], "FixedSize(3)"]: """ Return list indicating whether domain is periodic in each direction """
[docs] def outsideRoundOffDomain( self, x: typing.SupportsFloat, y: typing.SupportsFloat, z: typing.SupportsFloat ) -> bool: """ Returns true if a point is outside the roundoff domain. All particles with positions inside the roundoff domain are sure to be mapped to cells inside the Domain() box. Note that the same need not be true for all points inside ProbDomain() """
[docs] def period(self, dir: typing.SupportsInt) -> int: """ Return the period in the specified direction """
@typing.overload def periodicity(self) -> Periodicity: ... @typing.overload def periodicity(self, b: Box) -> Periodicity: """ Return Periodicity object with lengths determined by input Box """
[docs] def refine(self, rr: IntVect3D) -> None: ...
[docs] def setPeriodicity( self, period: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> typing.Annotated[list[int], "FixedSize(3)"]: """ Set periodicity flags and return the old flags. Note that, unlike Periodicity class, the flags are just boolean. """
@property def domain(self) -> Box: """ The rectangular domain (index space). """ @domain.setter def domain(self, arg1: Box) -> None: ... @property def prob_domain(self) -> RealBox: """ The problem domain (real). """ @prob_domain.setter def prob_domain(self, arg1: RealBox) -> None: ...
[docs] class GeometryData: @typing.overload def CellSize(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Returns the cellsize for each coordinate direction. """ @typing.overload def CellSize(self, arg0: typing.SupportsInt) -> float: """ Returns the cellsize for specified coordinate direction. """
[docs] def Coord(self) -> int: """ return integer coordinate type """
[docs] def Domain(self) -> Box: """ Returns our rectangular domain """
@typing.overload def ProbHi(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Returns the hi end for each coordinate direction. """ @typing.overload def ProbHi(self, arg0: typing.SupportsInt) -> float: """ Returns the hi end of the problem domain in specified dimension. """ @typing.overload def ProbLo(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Returns the lo end for each coordinate direction. """ @typing.overload def ProbLo(self, arg0: typing.SupportsInt) -> float: """ Returns the lo end of the problem domain in specified dimension. """ def __init__(self) -> None: ... def __repr__(self) -> str: ... @typing.overload def isPeriodic(self) -> typing.Annotated[list[int], "FixedSize(3)"]: """ Returns whether the domain is periodic in each direction. """ @typing.overload def isPeriodic(self, arg0: typing.SupportsInt) -> int: """ Returns whether the domain is periodic in the given direction. """ @property def coord(self) -> int: """ The Coordinates type. """ @property def domain(self) -> Box: """ The index domain. """ @property def dx(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ The cellsize for each coordinate direction. """ @property def is_periodic(self) -> typing.Annotated[list[int], "FixedSize(3)"]: """ Returns whether the domain is periodic in each coordinate direction. """ @property def prob_domain(self) -> RealBox: """ The problem domain (real). """
[docs] class IndexType:
[docs] class CellIndex(enum.IntEnum): """ An enumeration. """ CELL: typing.ClassVar[IndexType.CellIndex] # value = <CellIndex.CELL: 0> NODE: typing.ClassVar[IndexType.CellIndex] # value = <CellIndex.NODE: 1>
CELL: typing.ClassVar[IndexType.CellIndex] # value = <CellIndex.CELL: 0> NODE: typing.ClassVar[IndexType.CellIndex] # value = <CellIndex.NODE: 1> __hash__: typing.ClassVar[None] = None
[docs] @staticmethod def cell_type() -> IndexType: ...
[docs] @staticmethod def node_type() -> IndexType: ...
def __eq__(self, arg0: IndexType) -> bool: ... def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: IndexType) -> None: ... @typing.overload def __init__( self, arg0: IndexType.CellIndex, arg1: IndexType.CellIndex, arg2: IndexType.CellIndex, ) -> None: ... def __len__(self) -> int: ... def __lt__(self, arg0: IndexType) -> bool: ... def __ne__(self, arg0: IndexType) -> bool: ... def __repr__(self) -> str: ... def __str(self) -> str: ...
[docs] def any(self) -> bool: ...
@typing.overload def cell_centered(self) -> bool: ... @typing.overload def cell_centered(self, arg0: typing.SupportsInt) -> bool: ...
[docs] def clear(self) -> None: ...
[docs] def flip(self, arg0: typing.SupportsInt) -> None: ...
@typing.overload def ix_type(self) -> IntVect3D: ... @typing.overload def ix_type(self, arg0: typing.SupportsInt) -> IndexType.CellIndex: ... @typing.overload def node_centered(self) -> bool: ... @typing.overload def node_centered(self, arg0: typing.SupportsInt) -> bool: ...
[docs] def ok(self) -> bool: ...
[docs] def set(self, arg0: typing.SupportsInt) -> None: ...
[docs] def set_type(self, arg0: typing.SupportsInt, arg1: IndexType.CellIndex) -> None: ...
[docs] def setall(self) -> None: ...
[docs] def test(self, arg0: typing.SupportsInt) -> bool: ...
[docs] def to_IntVect(self) -> IntVect3D: ...
[docs] def unset(self, arg0: typing.SupportsInt) -> None: ...
class IntVect1D: __hash__: typing.ClassVar[None] = None @staticmethod def cell_vector() -> IntVect1D: ... @staticmethod def max_vector() -> IntVect1D: ... @staticmethod def min_vector() -> IntVect1D: ... @staticmethod def node_vector() -> IntVect1D: ... @staticmethod def unit_vector() -> IntVect1D: ... @staticmethod def zero_vector() -> IntVect1D: ... @typing.overload def __add__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __add__(self, arg0: IntVect1D) -> IntVect1D: ... @typing.overload def __eq__(self, arg0: typing.SupportsInt) -> bool: ... @typing.overload def __eq__(self, arg0: IntVect1D) -> bool: ... def __ge__(self, arg0: IntVect1D) -> bool: ... def __getitem__(self, arg0: typing.SupportsInt) -> int: ... def __gt__(self, arg0: IntVect1D) -> bool: ... @typing.overload def __iadd__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __iadd__(self, arg0: IntVect1D) -> IntVect1D: ... @typing.overload def __imul__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __imul__(self, arg0: IntVect1D) -> IntVect1D: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @typing.overload def __isub__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __isub__(self, arg0: IntVect1D) -> IntVect1D: ... def __iter__(self) -> collections.abc.Iterator[int]: ... @typing.overload def __itruediv__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __itruediv__(self, arg0: IntVect1D) -> IntVect1D: ... def __le__(self, arg0: IntVect1D) -> bool: ... def __len__(self) -> int: ... def __lt__(self, arg0: IntVect1D) -> bool: ... @typing.overload def __mul__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __mul__(self, arg0: IntVect1D) -> IntVect1D: ... @typing.overload def __ne__(self, arg0: typing.SupportsInt) -> bool: ... @typing.overload def __ne__(self, arg0: IntVect1D) -> bool: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> int: ... def __str(self) -> str: ... @typing.overload def __sub__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __sub__(self, arg0: IntVect1D) -> IntVect1D: ... @typing.overload def __truediv__(self, arg0: typing.SupportsInt) -> IntVect1D: ... @typing.overload def __truediv__(self, arg0: IntVect1D) -> IntVect1D: ... def dim3(self) -> Dim3: ... def numpy(self) -> numpy.ndarray: ... @property def max(self) -> int: ... @property def min(self) -> int: ... @property def sum(self) -> int: ... class IntVect2D: __hash__: typing.ClassVar[None] = None @staticmethod def cell_vector() -> IntVect2D: ... @staticmethod def max_vector() -> IntVect2D: ... @staticmethod def min_vector() -> IntVect2D: ... @staticmethod def node_vector() -> IntVect2D: ... @staticmethod def unit_vector() -> IntVect2D: ... @staticmethod def zero_vector() -> IntVect2D: ... @typing.overload def __add__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __add__(self, arg0: IntVect2D) -> IntVect2D: ... @typing.overload def __eq__(self, arg0: typing.SupportsInt) -> bool: ... @typing.overload def __eq__(self, arg0: IntVect2D) -> bool: ... def __ge__(self, arg0: IntVect2D) -> bool: ... def __getitem__(self, arg0: typing.SupportsInt) -> int: ... def __gt__(self, arg0: IntVect2D) -> bool: ... @typing.overload def __iadd__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __iadd__(self, arg0: IntVect2D) -> IntVect2D: ... @typing.overload def __imul__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __imul__(self, arg0: IntVect2D) -> IntVect2D: ... @typing.overload def __init__(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> None: ... @typing.overload def __isub__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __isub__(self, arg0: IntVect2D) -> IntVect2D: ... def __iter__(self) -> collections.abc.Iterator[int]: ... @typing.overload def __itruediv__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __itruediv__(self, arg0: IntVect2D) -> IntVect2D: ... def __le__(self, arg0: IntVect2D) -> bool: ... def __len__(self) -> int: ... def __lt__(self, arg0: IntVect2D) -> bool: ... @typing.overload def __mul__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __mul__(self, arg0: IntVect2D) -> IntVect2D: ... @typing.overload def __ne__(self, arg0: typing.SupportsInt) -> bool: ... @typing.overload def __ne__(self, arg0: IntVect2D) -> bool: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> int: ... def __str(self) -> str: ... @typing.overload def __sub__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __sub__(self, arg0: IntVect2D) -> IntVect2D: ... @typing.overload def __truediv__(self, arg0: typing.SupportsInt) -> IntVect2D: ... @typing.overload def __truediv__(self, arg0: IntVect2D) -> IntVect2D: ... def dim3(self) -> Dim3: ... def numpy(self) -> numpy.ndarray: ... @property def max(self) -> int: ... @property def min(self) -> int: ... @property def sum(self) -> int: ... class IntVect3D: __hash__: typing.ClassVar[None] = None @staticmethod def cell_vector() -> IntVect3D: ... @staticmethod def max_vector() -> IntVect3D: ... @staticmethod def min_vector() -> IntVect3D: ... @staticmethod def node_vector() -> IntVect3D: ... @staticmethod def unit_vector() -> IntVect3D: ... @staticmethod def zero_vector() -> IntVect3D: ... @typing.overload def __add__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __add__(self, arg0: IntVect3D) -> IntVect3D: ... @typing.overload def __eq__(self, arg0: typing.SupportsInt) -> bool: ... @typing.overload def __eq__(self, arg0: IntVect3D) -> bool: ... def __ge__(self, arg0: IntVect3D) -> bool: ... def __getitem__(self, arg0: typing.SupportsInt) -> int: ... def __gt__(self, arg0: IntVect3D) -> bool: ... @typing.overload def __iadd__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __iadd__(self, arg0: IntVect3D) -> IntVect3D: ... @typing.overload def __imul__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __imul__(self, arg0: IntVect3D) -> IntVect3D: ... @typing.overload def __init__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(3)" ], ) -> None: ... @typing.overload def __isub__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __isub__(self, arg0: IntVect3D) -> IntVect3D: ... def __iter__(self) -> collections.abc.Iterator[int]: ... @typing.overload def __itruediv__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __itruediv__(self, arg0: IntVect3D) -> IntVect3D: ... def __le__(self, arg0: IntVect3D) -> bool: ... def __len__(self) -> int: ... def __lt__(self, arg0: IntVect3D) -> bool: ... @typing.overload def __mul__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __mul__(self, arg0: IntVect3D) -> IntVect3D: ... @typing.overload def __ne__(self, arg0: typing.SupportsInt) -> bool: ... @typing.overload def __ne__(self, arg0: IntVect3D) -> bool: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> int: ... def __str(self) -> str: ... @typing.overload def __sub__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __sub__(self, arg0: IntVect3D) -> IntVect3D: ... @typing.overload def __truediv__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __truediv__(self, arg0: IntVect3D) -> IntVect3D: ... def dim3(self) -> Dim3: ... def numpy(self) -> numpy.ndarray: ... @property def max(self) -> int: ... @property def min(self) -> int: ... @property def sum(self) -> int: ...
[docs] class MFInfo: alloc: bool arena: Arena tags: Vector_string def __init__(self) -> None: ...
[docs] def set_alloc(self, arg0: bool) -> MFInfo: ...
[docs] def set_arena(self, arg0: Arena) -> MFInfo: ...
[docs] def set_tag(self, arg0: str) -> None: ...
class MFItInfo: device_sync: bool do_tiling: bool dynamic: bool tilesize: IntVect3D def __init__(self) -> None: ... def disable_device_sync(self) -> MFItInfo: ... def enable_tiling(self, ts: IntVect3D) -> MFItInfo: ... def set_device_sync(self, f: bool) -> MFItInfo: ... def set_dynamic(self, f: bool) -> MFItInfo: ... def set_num_streams(self, n: typing.SupportsInt) -> MFItInfo: ... def use_default_stream(self) -> MFItInfo: ... @property def num_streams(self) -> int: ... @num_streams.setter def num_streams(self, arg0: typing.SupportsInt) -> None: ...
[docs] class MFIter: @typing.overload def __init__(self, arg0: FabArrayBase) -> None: ... @typing.overload def __init__(self, arg0: FabArrayBase, arg1: MFItInfo) -> None: ... @typing.overload def __init__(self, arg0: MultiFab) -> None: ... @typing.overload def __init__(self, arg0: MultiFab, arg1: MFItInfo) -> None: ... @typing.overload def __init__(self, arg0: iMultiFab) -> None: ... @typing.overload def __init__(self, arg0: iMultiFab, arg1: MFItInfo) -> None: ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... def _incr(self) -> None: ...
[docs] def fabbox(self) -> Box: ...
[docs] def finalize(self) -> None: ...
@typing.overload def grownnodaltilebox( self, int: typing.SupportsInt = -1, ng: typing.SupportsInt = -1000000 ) -> Box: ... @typing.overload def grownnodaltilebox(self, int: typing.SupportsInt, ng: IntVect3D) -> Box: ...
[docs] def growntilebox(self, ng: IntVect3D = -1000000) -> Box: ...
[docs] def nodaltilebox(self, dir: typing.SupportsInt = -1) -> Box: ...
@typing.overload def tilebox(self) -> Box: ... @typing.overload def tilebox(self, arg0: IntVect3D) -> Box: ... @typing.overload def tilebox(self, arg0: IntVect3D, arg1: IntVect3D) -> Box: ...
[docs] def validbox(self) -> Box: ...
@property def index(self) -> int: ... @property def is_valid(self) -> bool: ... @property def length(self) -> int: ...
class MPMD_Copier: @typing.overload def __init__(self, arg0: bool) -> None: ... @typing.overload def __init__( self, ba: BoxArray, dm: DistributionMapping, send_ba: bool = False ) -> None: ... def box_array(self) -> BoxArray: ... def distribution_map(self) -> DistributionMapping: ... def recv( self, arg0: FabArray_FArrayBox, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... def send( self, arg0: FabArray_FArrayBox, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ...
[docs] class MultiFab(FabArray_FArrayBox): @staticmethod def __iter__(mfab): ...
[docs] @staticmethod def finalize() -> None: ...
[docs] @staticmethod def initialize() -> None: ...
def __getitem__(self, index, with_internal_ghosts=False): """ Returns slice of the MultiFab using global indexing, as a numpy array. This uses numpy array indexing, with the indexing relative to the global array. The slice ranges can cross multiple blocks and the result will be gathered into a single array. In an MPI context, this is a global operation. An "allgather" is performed so that the full result is returned on all processors. Note that the index is in fortran ordering and that 0 is the lower boundary of the whole domain. The default range of the indices includes only the valid cells. The ":" index will include all of the valid cels and no ghost cells. The ghost cells can be accessed using imaginary numbers, with negative imaginary numbers for the lower ghost cells, and positive for the upper ghost cells. The index "[-1j]" for example refers to the first lower ghost cell, and "[1j]" to the first upper ghost cell. To access all cells, ghosts and valid cells, use an empty tuple for the index, i.e. "[()]". Parameters ---------- index : the index using numpy style indexing Index of the slice to return. with_internal_ghosts : bool, optional Whether to include internal ghost cells. When true, data from ghost cells may be used that overlaps valid cells. """ @typing.overload def __init__(self) -> None: """ Constructs an empty (i)MultiFab. Data can be defined at a later time using the define member functions inherited from FabArray. """ @typing.overload def __init__(self, a: Arena) -> None: """ Constructs an empty (i)MultiFab. Data can be defined at a later time using the define member functions. If ``define`` is called later with a nullptr as MFInfo's arena, the default Arena ``a`` will be used. If the arena in MFInfo is not a nullptr, the MFInfo's arena will be used. """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt, info: MFInfo, factory: FabFactory_FArrayBox, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt, info: MFInfo, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: IntVect3D, info: MFInfo, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: IntVect3D, info: MFInfo, factory: FabFactory_FArrayBox, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: IntVect3D, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ def __repr__(self) -> str: ... def __setitem__(self, index, value): """ Sets the slice of the MultiFab using global indexing. This uses numpy array indexing, with the indexing relative to the global array. The slice ranges can cross multiple blocks and the value will be distributed accordingly. Note that this will apply the value to both valid and ghost cells. In an MPI context, this is a local operation. On each processor, the blocks within the slice range will be set to the value. Note that the index is in fortran ordering and that 0 is the lower boundary of the whole domain. The default range of the indices includes only the valid cells. The ":" index will include all of the valid cels and no ghost cells. The ghost cells can be accessed using imaginary numbers, with negative imaginary numbers for the lower ghost cells, and positive for the upper ghost cells. The index "[-1j]" for example refers to the first lower ghost cell, and "[1j]" to the first upper ghost cell. To access all cells, ghosts and valid cells, use an empty tuple for the index, i.e. "[()]". Parameters ---------- index : the index using numpy style indexing Index of the slice to return. value : scalar or array Input value to assign to the specified slice of the MultiFab """ @typing.overload def add( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Add src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def add( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Add src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def add_product( self, src1: MultiFab, comp1: typing.SupportsInt, src2: MultiFab, comp2: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ self += src1 * src2 """ @typing.overload def add_product( self, src1: MultiFab, comp1: typing.SupportsInt, src2: MultiFab, comp2: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ self += src1 * src2 """
[docs] def average_sync(self, arg0: Periodicity) -> None: ...
[docs] def box_array(self: FabArrayBase) -> BoxArray: ...
@typing.overload def contains_inf(self, local: bool = False) -> bool: ... @typing.overload def contains_inf( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt = 0, local: bool = False, ) -> bool: ... @typing.overload def contains_inf( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, ngrow: IntVect3D, local: bool = False, ) -> bool: ... @typing.overload def contains_nan(self, local: bool = False) -> bool: ... @typing.overload def contains_nan( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt = 0, local: bool = False, ) -> bool: ... @typing.overload def contains_nan( self, scomp: typing.SupportsInt, ncomp: typing.SupportsInt, ngrow: IntVect3D, local: bool = False, ) -> bool: ...
[docs] def copy(self): """ Create a copy of this MultiFab, using the same Arena. Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX Returns ------- amrex.MultiFab A copy of this MultiFab. """
@typing.overload def copymf( self, src: MultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Copy from src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. The copy is local """ @typing.overload def copymf( self, src: MultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Copy from src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. The copy is local """
[docs] def divi( self, mf: MultiFab, strt_comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ This function divides the values of the cells in mf from the corresponding cells of this MultiFab. mf is required to have the same BoxArray or "valid region" as this MultiFab. The division is done only to num_comp components, starting with component number strt_comp. The parameter nghost specifies the number of boundary cells that will be modified. If nghost == 0, only the valid region of each FArrayBox will be modified. Note, nothing is done to protect against divide by zero. """
@typing.overload def divide( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Divide self by src including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def divide( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Divide self by src including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """
[docs] def dm(self: FabArrayBase) -> DistributionMapping: ...
@typing.overload def dot( self, comp: typing.SupportsInt, y: MultiFab, y_comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, local: bool = False, ) -> float: """ Returns the dot product of self with another MultiFab. """ @typing.overload def dot( self, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, local: bool = False, ) -> float: """ Returns the dot product with itself. """ @typing.overload def dot( self, mask: iMultiFab, comp: typing.SupportsInt, y: MultiFab, y_comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, local: bool = False, ) -> float: """ Returns the dot product of self with another MultiFab where the mask is valid. """
[docs] def imesh(self, idir, include_ghosts=False): """ Returns the integer mesh along the specified direction with the appropriate centering. This is the location of the data points in grid cell units. Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX direction : integer Zero based direction number. In a typical Cartesian case, 0 would be 'x' direction. include_ghosts : bool, default=False Whether or not ghost cells are included in the mesh. """
@typing.overload def invert( self, numerator: typing.SupportsFloat, nghost: typing.SupportsInt ) -> None: """ Replaces the value of each cell in the specified subregion of the MultiFab with its reciprocal multiplied by the value of numerator. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def invert( self, numerator: typing.SupportsFloat, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Replaces the value of each cell in the specified subregion of the MultiFab with its reciprocal multiplied by the value of numerator. The subregion consists of the num_comp components starting at component comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def invert( self, numerator: typing.SupportsFloat, region: Box, nghost: typing.SupportsInt ) -> None: """ Scales the value of each cell in the valid region of each component of the MultiFab by the scalar val (a[i] <- a[i]*val), that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def invert( self, numerator: typing.SupportsFloat, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of invert(), with the restriction that the subregion is further constrained to the intersection with Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """
[docs] def lin_comb( self, a: typing.SupportsFloat, x: MultiFab, x_comp: typing.SupportsInt, b: typing.SupportsFloat, y: MultiFab, y_comp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ self = a * x + b * y """
@typing.overload def max( self, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> float: """ Returns the maximum value of the specified component of the (i)MultiFab. """ @typing.overload def max( self, region: Box, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> float: """ Returns the maximum value of the specified component of the (i)MultiFab over the region. """
[docs] def maxIndex(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> IntVect3D: ... @typing.overload def min( self, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> float: """ Returns the minimum value of the specified component of the (i)MultiFab. """ @typing.overload def min( self, region: Box, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> float: """ Returns the minimum value of the specified component of the (i)MultiFab over the region. """
[docs] def minIndex(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> IntVect3D: ...
[docs] def minus( self, mf: MultiFab, strt_comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ This function subtracts the values of the cells in mf from the corresponding cells of this MultiFab. mf is required to have the same BoxArray or "valid region" as this MultiFab. The subtraction is done only to num_comp components, starting with component number strt_comp. The parameter nghost specifies the number of boundary cells that will be modified. If nghost == 0, only the valid region of each FArrayBox will be modified. """
@typing.overload def mult(self, val: typing.SupportsFloat, nghost: typing.SupportsInt = 0) -> None: """ Scales the value of each cell in the valid region of each component of the MultiFab by the scalar val (a[i] <- a[i]*val). The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def mult( self, val: typing.SupportsFloat, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Scales the value of each cell in the specified subregion of the MultiFab by the scalar val (a[i] <- a[i]*val). The subregion consists of the num_comp components starting at component comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def mult( self, val: typing.SupportsFloat, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of mult(), with the restriction that the subregion is further constrained to the intersection with Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def mult( self, val: typing.SupportsFloat, region: Box, nghost: typing.SupportsInt = 0 ) -> None: """ Scales the value of each cell in the valid region of each component of the MultiFab by the scalar val (a[i] <- a[i]*val), that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def multiply( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Multiply self by src including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def multiply( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Multiply self by src including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def negate(self, nghost: typing.SupportsInt = 0) -> None: """ Negates the value of each cell in the valid region of the MultiFab. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def negate( self, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Negates the value of each cell in the specified subregion of the MultiFab. The subregion consists of the num_comp components starting at component comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def negate(self, region: Box, nghost: typing.SupportsInt = 0) -> None: """ Negates the value of each cell in the valid region of the MultiFab that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def negate( self, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of negate(), with the restriction that the subregion is further constrained to the intersection with Box region. """ @typing.overload def norm0( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: bool, arg3: bool ) -> float: ... @typing.overload def norm0( self, arg0: iMultiFab, arg1: typing.SupportsInt, arg2: typing.SupportsInt, arg3: bool, ) -> float: ... @typing.overload def norm1( self, arg0: typing.SupportsInt, arg1: Periodicity, arg2: bool ) -> float: ... @typing.overload def norm1( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: bool ) -> float: ... @typing.overload def norm1( self, arg0: Vector_int, arg1: typing.SupportsInt, arg2: bool ) -> Vector_Real: ... @typing.overload def norm2(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def norm2(self, arg0: typing.SupportsInt, arg1: Periodicity) -> float: ... @typing.overload def norm2(self, arg0: Vector_int) -> Vector_Real: ...
[docs] def norminf(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: bool, arg3: bool ) -> float: ...
[docs] def override_sync(self, arg0: iMultiFab, arg1: Periodicity) -> None: ...
@typing.overload def plus(self, val: typing.SupportsFloat, nghost: typing.SupportsInt = 0) -> None: """ Adds the scalar value val to the value of each cell in the valid region of each component of the MultiFab. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def plus( self, val: typing.SupportsFloat, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Adds the scalar value \\p val to the value of each cell in the specified subregion of the MultiFab. The subregion consists of the \\p num_comp components starting at component \\p comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def plus( self, val: typing.SupportsFloat, region: Box, nghost: typing.SupportsInt = 0 ) -> None: """ Adds the scalar value val to the value of each cell in the valid region of each component of the MultiFab, that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def plus( self, val: typing.SupportsFloat, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of plus(), with the restriction that the subregion is further constrained to the intersection with Box region. """ @typing.overload def plus( self, mf: MultiFab, strt_comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ This function adds the values of the cells in mf to the corresponding cells of this MultiFab. mf is required to have the same BoxArray or "valid region" as this MultiFab. The addition is done only to num_comp components, starting with component number strt_comp. The parameter nghost specifies the number of boundary cells that will be modified. If nghost == 0, only the valid region of each FArrayBox will be modified. """
[docs] def saxpy( self, a: typing.SupportsFloat, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ self += a * src """
@typing.overload def subtract( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Subtract src from self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def subtract( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Subtract src from self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def sum(self, comp: typing.SupportsInt = 0, local: bool = False) -> float: """ Returns the sum of component 'comp' over the (i)MultiFab -- no ghost cells are included. """ @typing.overload def sum( self, region: Box, comp: typing.SupportsInt = 0, local: bool = False ) -> float: """ Returns the sum of component 'comp' in the given 'region'. -- no ghost cells are included. """ @typing.overload def sum_unique( self, comp: typing.SupportsInt = 0, local: bool = False, period: Periodicity = ..., ) -> float: """ Same as sum with local=false, but for non-cell-centered data, thisskips non-unique points that are owned by multiple boxes. """ @typing.overload def sum_unique( self, region: Box, comp: typing.SupportsInt = 0, local: bool = False ) -> float: """ Returns the unique sum of component `comp` in the given region. Non-unique points owned by multiple boxes in the MultiFab areonly added once. No ghost cells are included. This function does not takeperiodicity into account in the determination of uniqueness of points. """ @typing.overload def swap( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Swap from src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. The swap is local. """ @typing.overload def swap( self, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: """ Swap from src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. The swap is local. """
[docs] def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into a MultiFab. This includes ngrow guard cells of each box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- list of cupy.array A list of CuPy n-dimensional arrays, for each local block in the MultiFab. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into a MultiFab. This includes ngrow guard cells of each box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- list of numpy.array A list of NumPy n-dimensional arrays, for each local block in the MultiFab. """
[docs] def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a MultiFab, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of each box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- list of xp.array A list of NumPy or CuPy n-dimensional arrays, for each local block in the MultiFab. """
[docs] def weighted_sync(self, arg0: MultiFab, arg1: Periodicity) -> None: ...
[docs] def xpay( self, a: typing.SupportsFloat, src: MultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ self = src + a * self """
@property def n_comp(self) -> int: ... @property def n_grow_vect(self) -> IntVect3D: ... @property def shape(self, include_ghosts=False): """ Returns the shape of the global array Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX include_ghosts : bool, default=False Whether or not ghost cells are included """ @property def shape_with_ghosts(self): """ Returns the shape of the global array including ghost cells Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX """
class PODVector_int_arena: def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_int_arena) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... def assign(self, value: typing.SupportsInt) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsInt) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_int_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class PODVector_int_pinned: def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_int_pinned) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ...
[docs] def assign(self, value: typing.SupportsInt) -> None: """ assign the same value to every element """
[docs] def capacity(self) -> int: ...
[docs] def clear(self) -> None: ...
[docs] def empty(self) -> bool: ...
[docs] def pop_back(self) -> None: ...
[docs] def push_back(self, arg0: typing.SupportsInt) -> None: ...
[docs] def reserve(self, arg0: typing.SupportsInt) -> None: ...
@typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ...
[docs] def shrink_to_fit(self) -> None: ...
[docs] def size(self) -> int: ...
[docs] def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_host(self) -> PODVector_int_pinned: ...
[docs] def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """
[docs] def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
class PODVector_int_std: def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_int_std) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... def assign(self, value: typing.SupportsInt) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsInt) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_int_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class PODVector_real_arena: def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_real_arena) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ...
[docs] def assign(self, value: typing.SupportsFloat) -> None: """ assign the same value to every element """
[docs] def capacity(self) -> int: ...
[docs] def clear(self) -> None: ...
[docs] def empty(self) -> bool: ...
[docs] def pop_back(self) -> None: ...
[docs] def push_back(self, arg0: typing.SupportsFloat) -> None: ...
[docs] def reserve(self, arg0: typing.SupportsInt) -> None: ...
@typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ...
[docs] def shrink_to_fit(self) -> None: ...
[docs] def size(self) -> int: ...
[docs] def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_host(self) -> PODVector_real_pinned: ...
[docs] def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """
[docs] def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
class PODVector_real_pinned: def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_real_pinned) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def assign(self, value: typing.SupportsFloat) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsFloat) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_real_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class PODVector_real_std: def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_real_std) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def assign(self, value: typing.SupportsFloat) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsFloat) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_real_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class PODVector_uint64_arena: def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_uint64_arena) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... def assign(self, value: typing.SupportsInt) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsInt) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_uint64_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class PODVector_uint64_pinned: def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_uint64_pinned) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... def assign(self, value: typing.SupportsInt) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsInt) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_uint64_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class PODVector_uint64_std: def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, size: typing.SupportsInt) -> None: ... @typing.overload def __init__(self, other: PODVector_uint64_std) -> None: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... def assign(self, value: typing.SupportsInt) -> None: """ assign the same value to every element """ def capacity(self) -> int: ... def clear(self) -> None: ... def empty(self) -> bool: ... def pop_back(self) -> None: ... def push_back(self, arg0: typing.SupportsInt) -> None: ... def reserve(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def resize(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def size(self) -> int: ... def to_cupy(self, copy=False): """ Provide a CuPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- cupy.array A 1D cupy array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_host(self) -> PODVector_uint64_pinned: ... def to_numpy(self, copy=False): """ Provide a NumPy view into a PODVector (e.g., RealVector, IntVector). Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- np.array A 1D NumPy array. """ def to_xp(self, copy=False): """ Provide a NumPy or CuPy view into a PODVector (e.g., RealVector, IntVector), depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.PODVector_* A PODVector class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- xp.array A 1D NumPy or CuPy array. """ @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... class ParConstIterBase_16_4_0_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_16_4_arena: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_16_4_0_0_arena: ... def soa(self) -> StructOfArrays_0_0_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_16_4_0_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_16_4_default: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_16_4_0_0_default: ... def soa(self) -> StructOfArrays_0_0_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_16_4_0_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_16_4_pinned: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_16_4_0_0_pinned: ... def soa(self) -> StructOfArrays_0_0_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_2_1_3_1_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_2_1_arena: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_2_1_3_1_arena: ... def soa(self) -> StructOfArrays_3_1_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_2_1_3_1_default(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_2_1_default: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_2_1_3_1_default: ... def soa(self) -> StructOfArrays_3_1_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_2_1_3_1_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_2_1_pinned: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_2_1_3_1_pinned: ... def soa(self) -> StructOfArrays_3_1_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_3_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_3_0_arena: ... def soa(self) -> StructOfArrays_3_0_idcpu_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_3_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_3_0_default: ... def soa(self) -> StructOfArrays_3_0_idcpu_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_3_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_3_0_pinned: ... def soa(self) -> StructOfArrays_3_0_idcpu_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_7_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_7_0_arena: ... def soa(self) -> StructOfArrays_7_0_idcpu_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_7_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_7_0_default: ... def soa(self) -> StructOfArrays_7_0_idcpu_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_7_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_7_0_pinned: ... def soa(self) -> StructOfArrays_7_0_idcpu_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_8_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_8_0_arena: ... def soa(self) -> StructOfArrays_8_0_idcpu_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_8_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_8_0_default: ... def soa(self) -> StructOfArrays_8_0_idcpu_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIterBase_pureSoA_8_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_8_0_pinned: ... def soa(self) -> StructOfArrays_8_0_idcpu_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParConstIter_16_4_0_0_arena(ParConstIterBase_16_4_0_0_arena): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_16_4_0_0_default(ParConstIterBase_16_4_0_0_default): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_16_4_0_0_pinned(ParConstIterBase_16_4_0_0_pinned): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_2_1_3_1_arena(ParConstIterBase_2_1_3_1_arena): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_2_1_3_1_default(ParConstIterBase_2_1_3_1_default): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_2_1_3_1_pinned(ParConstIterBase_2_1_3_1_pinned): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_3_0_arena(ParConstIterBase_pureSoA_3_0_arena): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_3_0_default(ParConstIterBase_pureSoA_3_0_default): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_3_0_pinned(ParConstIterBase_pureSoA_3_0_pinned): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_7_0_arena(ParConstIterBase_pureSoA_7_0_arena): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_7_0_default(ParConstIterBase_pureSoA_7_0_default): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_7_0_pinned(ParConstIterBase_pureSoA_7_0_pinned): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParConstIter_pureSoA_8_0_arena(ParConstIterBase_pureSoA_8_0_arena): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ...
[docs] class ParConstIter_pureSoA_8_0_default(ParConstIterBase_pureSoA_8_0_default): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ...
class ParConstIter_pureSoA_8_0_pinned(ParConstIterBase_pureSoA_8_0_pinned): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIterBase_16_4_0_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_16_4_arena: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_16_4_0_0_arena: ... def soa(self) -> StructOfArrays_0_0_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_16_4_0_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_16_4_default: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_16_4_0_0_default: ... def soa(self) -> StructOfArrays_0_0_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_16_4_0_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_16_4_pinned: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_16_4_0_0_pinned: ... def soa(self) -> StructOfArrays_0_0_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_2_1_3_1_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_2_1_arena: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_2_1_3_1_arena: ... def soa(self) -> StructOfArrays_3_1_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_2_1_3_1_default(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_2_1_default: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_2_1_3_1_default: ... def soa(self) -> StructOfArrays_3_1_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_2_1_3_1_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def aos(self) -> ArrayOfStructs_2_1_pinned: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_2_1_3_1_pinned: ... def soa(self) -> StructOfArrays_3_1_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_3_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_3_0_arena: ... def soa(self) -> StructOfArrays_3_0_idcpu_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_3_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_3_0_default: ... def soa(self) -> StructOfArrays_3_0_idcpu_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_3_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_3_0_pinned: ... def soa(self) -> StructOfArrays_3_0_idcpu_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_7_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_7_0_arena: ... def soa(self) -> StructOfArrays_7_0_idcpu_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_7_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_7_0_default: ... def soa(self) -> StructOfArrays_7_0_idcpu_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_7_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_7_0_pinned: ... def soa(self) -> StructOfArrays_7_0_idcpu_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_8_0_arena(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_8_0_arena: ... def soa(self) -> StructOfArrays_8_0_idcpu_arena: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_8_0_default(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_8_0_default: ... def soa(self) -> StructOfArrays_8_0_idcpu_default: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIterBase_pureSoA_8_0_pinned(MFIter): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def _incr(self) -> None: ... def finalize(self) -> None: ... def geom(self, level: typing.SupportsInt) -> Geometry: ... def particle_tile(self) -> ParticleTile_pureSoA_8_0_pinned: ... def soa(self) -> StructOfArrays_8_0_idcpu_pinned: ... @property def is_valid(self) -> bool: ... @property def level(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def pair_index(self) -> tuple[int, int]: ... @property def size(self) -> int: """ the number of particles on this tile """ class ParIter_16_4_0_0_arena(ParIterBase_16_4_0_0_arena): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_16_4_0_0_default(ParIterBase_16_4_0_0_default): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_16_4_0_0_pinned(ParIterBase_16_4_0_0_pinned): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_16_4_0_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_2_1_3_1_arena(ParIterBase_2_1_3_1_arena): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_2_1_3_1_default(ParIterBase_2_1_3_1_default): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_2_1_3_1_pinned(ParIterBase_2_1_3_1_pinned): is_soa_particle: typing.ClassVar[bool] = False def __init__( self, particle_container: ParticleContainer_2_1_3_1_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_3_0_arena(ParIterBase_pureSoA_3_0_arena): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_3_0_default(ParIterBase_pureSoA_3_0_default): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_3_0_pinned(ParIterBase_pureSoA_3_0_pinned): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_3_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_7_0_arena(ParIterBase_pureSoA_7_0_arena): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_7_0_default(ParIterBase_pureSoA_7_0_default): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_7_0_pinned(ParIterBase_pureSoA_7_0_pinned): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_7_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ... class ParIter_pureSoA_8_0_arena(ParIterBase_pureSoA_8_0_arena): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_arena, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ...
[docs] class ParIter_pureSoA_8_0_default(ParIterBase_pureSoA_8_0_default): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_default, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ...
class ParIter_pureSoA_8_0_pinned(ParIterBase_pureSoA_8_0_pinned): is_soa_particle: typing.ClassVar[bool] = True def __init__( self, particle_container: ParticleContainer_pureSoA_8_0_pinned, level: typing.SupportsInt, ) -> None: ... def __iter__(self): ... def __next__(self): """ This is a helper function for the C++ equivalent of void operator++() In Python, iterators always are called with __next__, even for the first access. This means we need to handle the first iterator element explicitly, otherwise we will jump directly to the 2nd element. We do this the same way as pybind11 does this, via a little state: https://github.com/AMReX-Codes/pyamrex/pull/50 https://github.com/AMReX-Codes/pyamrex/pull/262 https://github.com/pybind/pybind11/blob/v2.10.0/include/pybind11/pybind11.h#L2269-L2282 Important: we must NOT copy the AMReX iterator (unnecessary and expensive). self: the current iterator returns: the updated iterator """ def __repr__(self) -> str: ...
[docs] class ParmParse:
[docs] @staticmethod def addfile(arg0: str) -> None: ...
def __init__(self, prefix: str = "") -> None: ... def __repr__(self) -> str: ... @typing.overload def add(self, arg0: str, arg1: bool) -> None: ... @typing.overload def add(self, arg0: str, arg1: typing.SupportsInt) -> None: ... @typing.overload def add(self, arg0: str, arg1: typing.SupportsInt) -> None: ... @typing.overload def add(self, arg0: str, arg1: typing.SupportsInt) -> None: ... @typing.overload def add(self, arg0: str, arg1: typing.SupportsFloat) -> None: ... @typing.overload def add(self, arg0: str, arg1: typing.SupportsFloat) -> None: ... @typing.overload def add(self, arg0: str, arg1: str) -> None: ... @typing.overload def add(self, arg0: str, arg1: IntVect3D) -> None: ... @typing.overload def add(self, arg0: str, arg1: Box) -> None: ... @typing.overload def addarr( self, arg0: str, arg1: collections.abc.Sequence[typing.SupportsInt] ) -> None: ... @typing.overload def addarr( self, arg0: str, arg1: collections.abc.Sequence[typing.SupportsInt] ) -> None: ... @typing.overload def addarr( self, arg0: str, arg1: collections.abc.Sequence[typing.SupportsInt] ) -> None: ... @typing.overload def addarr( self, arg0: str, arg1: collections.abc.Sequence[typing.SupportsFloat] ) -> None: ... @typing.overload def addarr( self, arg0: str, arg1: collections.abc.Sequence[typing.SupportsFloat] ) -> None: ... @typing.overload def addarr(self, arg0: str, arg1: collections.abc.Sequence[str]) -> None: ... @typing.overload def addarr(self, arg0: str, arg1: collections.abc.Sequence[IntVect3D]) -> None: ... @typing.overload def addarr(self, arg0: str, arg1: collections.abc.Sequence[Box]) -> None: ...
[docs] def get_bool(self, name: str, ival: typing.SupportsInt = 0) -> bool: """ parses input values """
[docs] def get_int(self, name: str, ival: typing.SupportsInt = 0) -> int: """ parses input values """
[docs] def get_real(self, name: str, ival: typing.SupportsInt = 0) -> float: """ parses input values """
[docs] def pretty_print_table(self) -> None: """ Write the table in a pretty way to the ostream. If there are duplicates, only the last one is printed. """
[docs] def query_int(self, name: str, ival: typing.SupportsInt = 0) -> tuple[bool, int]: """ queries input values """
[docs] def remove(self, arg0: str) -> int: ...
[docs] def to_dict(self) -> dict: """ Convert to a nested Python dictionary. .. code-block:: python # Example: dump all ParmParse entries to YAML or TOML import toml import yaml pp = amr.ParmParse("").to_dict() yaml_string = yaml.dump(d) toml_string = toml.dumps(d) """
class ParticleContainer_16_4_0_0_arena: is_soa_particle: typing.ClassVar[bool] = False num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 0 num_struct_int: typing.ClassVar[int] = 4 num_struct_real: typing.ClassVar[int] = 16 const_iterator = ParConstIter_16_4_0_0_arena iterator = ParIter_16_4_0_0_arena @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_16_4_0_0_arena, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_16_4_0_0_arena, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_16_4_0_0_arena]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_one_per_cell( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, arg3: ParticleInitType_16_4_0_0, ) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_16_4_0_0, arg3: bool, arg4: RealBox, ) -> None: ... def init_random_per_box( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_16_4_0_0, ) -> None: ... def make_alike(self) -> ParticleContainer_16_4_0_0_arena: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_16_4_0_0_default: is_soa_particle: typing.ClassVar[bool] = False num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 0 num_struct_int: typing.ClassVar[int] = 4 num_struct_real: typing.ClassVar[int] = 16 const_iterator = ParConstIter_16_4_0_0_default iterator = ParIter_16_4_0_0_default @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_16_4_0_0_default, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_16_4_0_0_default, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_16_4_0_0_default]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_one_per_cell( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, arg3: ParticleInitType_16_4_0_0, ) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_16_4_0_0, arg3: bool, arg4: RealBox, ) -> None: ... def init_random_per_box( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_16_4_0_0, ) -> None: ... def make_alike(self) -> ParticleContainer_16_4_0_0_default: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_16_4_0_0_pinned: is_soa_particle: typing.ClassVar[bool] = False num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 0 num_struct_int: typing.ClassVar[int] = 4 num_struct_real: typing.ClassVar[int] = 16 const_iterator = ParConstIter_16_4_0_0_pinned iterator = ParIter_16_4_0_0_pinned @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_16_4_0_0_pinned, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_16_4_0_0_pinned, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_16_4_0_0_pinned]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_one_per_cell( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, arg3: ParticleInitType_16_4_0_0, ) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_16_4_0_0, arg3: bool, arg4: RealBox, ) -> None: ... def init_random_per_box( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_16_4_0_0, ) -> None: ... def make_alike(self) -> ParticleContainer_16_4_0_0_pinned: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_2_1_3_1_arena: is_soa_particle: typing.ClassVar[bool] = False num_array_int: typing.ClassVar[int] = 1 num_array_real: typing.ClassVar[int] = 3 num_struct_int: typing.ClassVar[int] = 1 num_struct_real: typing.ClassVar[int] = 2 const_iterator = ParConstIter_2_1_3_1_arena iterator = ParIter_2_1_3_1_arena @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_2_1_3_1_arena, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_2_1_3_1_arena, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_2_1_3_1_arena]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_one_per_cell( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, arg3: ParticleInitType_2_1_3_1, ) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_2_1_3_1, arg3: bool, arg4: RealBox, ) -> None: ... def init_random_per_box( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_2_1_3_1, ) -> None: ... def make_alike(self) -> ParticleContainer_2_1_3_1_arena: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """
[docs] class ParticleContainer_2_1_3_1_default: is_soa_particle: typing.ClassVar[bool] = False num_array_int: typing.ClassVar[int] = 1 num_array_real: typing.ClassVar[int] = 3 num_struct_int: typing.ClassVar[int] = 1 num_struct_real: typing.ClassVar[int] = 2 const_iterator = ParConstIter_2_1_3_1_default iterator = ParIter_2_1_3_1_default @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ...
[docs] def OK(
self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """
[docs] def add_particles(
self, other: ParticleContainer_2_1_3_1_default, local: bool = False ) -> None: ...
[docs] def add_particles_at_level(
self, particles: ParticleTile_2_1_3_1_default, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """
[docs] def clear_particles(self) -> None: ...
[docs] def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """
[docs] def get_particles(
self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_2_1_3_1_default]: ...
[docs] def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """
[docs] def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """
[docs] def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """
[docs] def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ...
[docs] def init_one_per_cell(
self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, arg3: ParticleInitType_2_1_3_1, ) -> None: ...
[docs] def init_random(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_2_1_3_1, arg3: bool, arg4: RealBox, ) -> None: ...
[docs] def init_random_per_box(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_2_1_3_1, ) -> None: ...
[docs] def make_alike(self) -> ParticleContainer_2_1_3_1_default: ...
[docs] def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ...
[docs] def number_of_particles_at_level(
self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ...
[docs] def number_of_particles_in_grid(
self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ...
[docs] def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ...
[docs] def redistribute(
self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ...
[docs] def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ...
[docs] def remove_particles_not_at_finestLevel(self) -> None: ...
[docs] def reserve_data(self) -> None: ...
[docs] def resize_data(self) -> None: ...
[docs] def restart(self, dir: str, file: str) -> None: ...
[docs] def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ...
[docs] def set_soa_compile_time_names(
self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ...
[docs] def shrink_t_fit(self) -> None: ...
[docs] def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ...
[docs] def sort_particles_by_cell(self) -> None: ...
[docs] def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """
[docs] def total_number_of_particles(
self, only_valid: bool = True, only_local: bool = False ) -> int: ...
[docs] def write_plotfile(self, dir: str, name: str) -> None: ...
@property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """
class ParticleContainer_2_1_3_1_pinned: is_soa_particle: typing.ClassVar[bool] = False num_array_int: typing.ClassVar[int] = 1 num_array_real: typing.ClassVar[int] = 3 num_struct_int: typing.ClassVar[int] = 1 num_struct_real: typing.ClassVar[int] = 2 const_iterator = ParConstIter_2_1_3_1_pinned iterator = ParIter_2_1_3_1_pinned @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_2_1_3_1_pinned, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_2_1_3_1_pinned, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_2_1_3_1_pinned]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_one_per_cell( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, arg3: ParticleInitType_2_1_3_1, ) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_2_1_3_1, arg3: bool, arg4: RealBox, ) -> None: ... def init_random_per_box( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_2_1_3_1, ) -> None: ... def make_alike(self) -> ParticleContainer_2_1_3_1_pinned: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_3_0_arena: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 3 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_3_0_arena iterator = ParIter_pureSoA_3_0_arena @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_3_0_arena, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_3_0_arena, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_3_0_arena]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_3_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_3_0_arena: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_3_0_default: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 3 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_3_0_default iterator = ParIter_pureSoA_3_0_default @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_3_0_default, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_3_0_default, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_3_0_default]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_3_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_3_0_default: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_3_0_pinned: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 3 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_3_0_pinned iterator = ParIter_pureSoA_3_0_pinned @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_3_0_pinned, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_3_0_pinned, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_3_0_pinned]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_3_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_3_0_pinned: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_7_0_arena: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 7 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_7_0_arena iterator = ParIter_pureSoA_7_0_arena @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_7_0_arena, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_7_0_arena, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_7_0_arena]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_7_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_7_0_arena: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_7_0_default: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 7 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_7_0_default iterator = ParIter_pureSoA_7_0_default @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_7_0_default, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_7_0_default, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_7_0_default]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_7_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_7_0_default: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_7_0_pinned: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 7 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_7_0_pinned iterator = ParIter_pureSoA_7_0_pinned @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_7_0_pinned, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_7_0_pinned, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_7_0_pinned]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_7_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_7_0_pinned: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleContainer_pureSoA_8_0_arena: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 8 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_8_0_arena iterator = ParIter_pureSoA_8_0_arena @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_8_0_arena, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_8_0_arena, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_8_0_arena]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_8_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_8_0_arena: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """
[docs] class ParticleContainer_pureSoA_8_0_default: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 8 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_8_0_default iterator = ParIter_pureSoA_8_0_default @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ...
[docs] def OK(
self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """
[docs] def add_particles(
self, other: ParticleContainer_pureSoA_8_0_default, local: bool = False ) -> None: ...
[docs] def add_particles_at_level(
self, particles: ParticleTile_pureSoA_8_0_default, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """
[docs] def clear_particles(self) -> None: ...
[docs] def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """
[docs] def get_particles(
self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_8_0_default]: ...
[docs] def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """
[docs] def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """
[docs] def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """
[docs] def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ...
[docs] def init_random(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_8_0, arg3: bool, arg4: RealBox, ) -> None: ...
[docs] def make_alike(self) -> ParticleContainer_pureSoA_8_0_default: ...
[docs] def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ...
[docs] def number_of_particles_at_level(
self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ...
[docs] def number_of_particles_in_grid(
self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ...
[docs] def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ...
[docs] def redistribute(
self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ...
[docs] def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ...
[docs] def remove_particles_not_at_finestLevel(self) -> None: ...
[docs] def reserve_data(self) -> None: ...
[docs] def resize_data(self) -> None: ...
[docs] def restart(self, dir: str, file: str) -> None: ...
[docs] def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ...
[docs] def set_soa_compile_time_names(
self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ...
[docs] def shrink_t_fit(self) -> None: ...
[docs] def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ...
[docs] def sort_particles_by_cell(self) -> None: ...
[docs] def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """
[docs] def total_number_of_particles(
self, only_valid: bool = True, only_local: bool = False ) -> int: ...
[docs] def write_plotfile(self, dir: str, name: str) -> None: ...
@property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """
class ParticleContainer_pureSoA_8_0_pinned: is_soa_particle: typing.ClassVar[bool] = True num_array_int: typing.ClassVar[int] = 0 num_array_real: typing.ClassVar[int] = 8 num_struct_int: typing.ClassVar[int] = 0 num_struct_real: typing.ClassVar[int] = 0 const_iterator = ParConstIter_pureSoA_8_0_pinned iterator = ParIter_pureSoA_8_0_pinned @typing.overload def Define( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def Define( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... def OK( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, ) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: Geometry, arg1: DistributionMapping, arg2: BoxArray ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_int, ) -> None: ... @typing.overload def __init__( self, arg0: Vector_Geometry, arg1: Vector_DistributionMapping, arg2: Vector_BoxArray, arg3: Vector_IntVect, ) -> None: ... @typing.overload def add_int_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ @typing.overload def add_int_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Int """ def add_particles( self, other: ParticleContainer_pureSoA_8_0_pinned, local: bool = False ) -> None: ... def add_particles_at_level( self, particles: ParticleTile_pureSoA_8_0_pinned, level: typing.SupportsInt, ngrow: typing.SupportsInt = 0, ) -> None: ... @typing.overload def add_real_comp(self, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ @typing.overload def add_real_comp(self, name: str, communicate: typing.SupportsInt = 1) -> None: """ add a new runtime component with type Real """ def clear_particles(self) -> None: ... def get_int_comp_index(self, arg0: str) -> int: """ Get the Integer SoA index of a component """ def get_particles( self, level: typing.SupportsInt ) -> dict[tuple[int, int], ParticleTile_pureSoA_8_0_pinned]: ... def get_real_comp_index(self, arg0: str) -> int: """ Get the ParticleReal SoA index of a component """ def has_int_comp(self, arg0: str) -> bool: """ Check if a container has an Integer component """ def has_real_comp(self, arg0: str) -> bool: """ Check if a container has an ParticleReal component """ def increment(self, arg0: MultiFab, arg1: typing.SupportsInt) -> None: ... def init_random( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: ParticleInitType_pureSoA_8_0, arg3: bool, arg4: RealBox, ) -> None: ... def make_alike(self) -> ParticleContainer_pureSoA_8_0_pinned: ... def num_local_tiles_at_level(self, arg0: typing.SupportsInt) -> int: ... def number_of_particles_at_level( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> int: ... def number_of_particles_in_grid( self, level: typing.SupportsInt, only_valid: bool = True, only_local: bool = False, ) -> Vector_Long: ... def print_capacity(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... def redistribute( self, lev_min: typing.SupportsInt = 0, lev_max: typing.SupportsInt = -1, nGrow: typing.SupportsInt = 0, local: typing.SupportsInt = 0, remove_negative: bool = True, ) -> None: ... def remove_particles_at_level(self, arg0: typing.SupportsInt) -> None: ... def remove_particles_not_at_finestLevel(self) -> None: ... def reserve_data(self) -> None: ... def resize_data(self) -> None: ... def restart(self, dir: str, file: str) -> None: ... def restart_checkpoint(self, dir: str, file: str, is_checkpoint: bool) -> None: ... def set_soa_compile_time_names( self, arg0: collections.abc.Sequence[str], arg1: collections.abc.Sequence[str] ) -> None: ... def shrink_t_fit(self) -> None: ... def sort_particles_by_bin(self, arg0: IntVect3D) -> None: ... def sort_particles_by_cell(self) -> None: ... def to_df(self, local=True, comm=None, root_rank=0): """ Copy all particles into a pandas.DataFrame Parameters ---------- self : amrex.ParticleContainer_* A ParticleContainer class in pyAMReX local : bool MPI rank-local particles only comm : MPI Communicator if local is False, this defaults to mpi4py.MPI.COMM_WORLD root_rank : MPI root rank to gather to if local is False, this defaults to 0 Returns ------- A concatenated pandas.DataFrame with particles from all levels. Returns None if no particles were found. If local=False, then all ranks but the root_rank will return None. """ def total_number_of_particles( self, only_valid: bool = True, only_local: bool = False ) -> int: ... def write_plotfile(self, dir: str, name: str) -> None: ... @property def byte_spread(self) -> typing.Annotated[list[int], "FixedSize(3)"]: ... @property def finest_level(self) -> int: ... @property def int_soa_names(self) -> list[str]: """ Get the names for the int SoA components """ @property def num_int_comps(self) -> int: """ The number of compile-time and runtime int components in SoA """ @property def num_position_components(self) -> int: ... @property def num_real_comps(self) -> int: """ The number of compile-time and runtime Real components in SoA """ @property def num_runtime_int_comps(self) -> int: """ The number of runtime Int components in SoA """ @property def num_runtime_real_comps(self) -> int: """ The number of runtime Real components in SoA """ @property def real_soa_names(self) -> list[str]: """ Get the names for the Real SoA components """ class ParticleInitType_16_4_0_0: is_soa_particle: typing.ClassVar[bool] = False def __init__(self) -> None: ... @property def int_array_data(self) -> typing.Annotated[list[int], "FixedSize(0)"]: ... @int_array_data.setter def int_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @property def int_struct_data(self) -> typing.Annotated[list[int], "FixedSize(4)"]: ... @int_struct_data.setter def int_struct_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> None: ... @property def real_array_data(self) -> typing.Annotated[list[float], "FixedSize(0)"]: ... @real_array_data.setter def real_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(0)" ], ) -> None: ... @property def real_struct_data(self) -> typing.Annotated[list[float], "FixedSize(16)"]: ... @real_struct_data.setter def real_struct_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(16)" ], ) -> None: ...
[docs] class ParticleInitType_2_1_3_1: is_soa_particle: typing.ClassVar[bool] = False def __init__(self) -> None: ... @property def int_array_data(self) -> typing.Annotated[list[int], "FixedSize(1)"]: ... @int_array_data.setter def int_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @property def int_struct_data(self) -> typing.Annotated[list[int], "FixedSize(1)"]: ... @int_struct_data.setter def int_struct_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @property def real_array_data(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... @real_array_data.setter def real_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @property def real_struct_data(self) -> typing.Annotated[list[float], "FixedSize(2)"]: ... @real_struct_data.setter def real_struct_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(2)" ], ) -> None: ...
class ParticleInitType_pureSoA_3_0: is_soa_particle: typing.ClassVar[bool] = True def __init__(self) -> None: ... @property def int_array_data(self) -> typing.Annotated[list[int], "FixedSize(0)"]: ... @int_array_data.setter def int_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @property def real_array_data(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... @real_array_data.setter def real_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... class ParticleInitType_pureSoA_7_0: is_soa_particle: typing.ClassVar[bool] = True def __init__(self) -> None: ... @property def int_array_data(self) -> typing.Annotated[list[int], "FixedSize(0)"]: ... @int_array_data.setter def int_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @property def real_array_data(self) -> typing.Annotated[list[float], "FixedSize(7)"]: ... @real_array_data.setter def real_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(7)" ], ) -> None: ... class ParticleInitType_pureSoA_8_0: is_soa_particle: typing.ClassVar[bool] = True def __init__(self) -> None: ... @property def int_array_data(self) -> typing.Annotated[list[int], "FixedSize(0)"]: ... @int_array_data.setter def int_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @property def real_array_data(self) -> typing.Annotated[list[float], "FixedSize(8)"]: ... @real_array_data.setter def real_array_data( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(8)" ], ) -> None: ... class ParticleTileData_16_4_0_0: def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def get_super_particle(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def set_super_particle( self, arg0: Particle_16_4, arg1: typing.SupportsInt ) -> None: ... @property def m_num_runtime_int(self) -> int: ... @property def m_num_runtime_real(self) -> int: ... @property def m_size(self) -> int: ... class ParticleTileData_2_1_3_1: def __getitem__(self, arg0: typing.SupportsInt) -> Particle_5_2: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_5_2) -> None: ... def get_super_particle(self, arg0: typing.SupportsInt) -> Particle_5_2: ... def set_super_particle( self, arg0: Particle_5_2, arg1: typing.SupportsInt ) -> None: ... @property def m_num_runtime_int(self) -> int: ... @property def m_num_runtime_real(self) -> int: ... @property def m_size(self) -> int: ... class ParticleTileData_pureSoA_3_0: def __getitem__(self, arg0: typing.SupportsInt) -> Particle_3_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_3_0) -> None: ... def get_super_particle(self, arg0: typing.SupportsInt) -> Particle_3_0: ... def set_super_particle( self, arg0: Particle_3_0, arg1: typing.SupportsInt ) -> None: ... @property def m_num_runtime_int(self) -> int: ... @property def m_num_runtime_real(self) -> int: ... @property def m_size(self) -> int: ... class ParticleTileData_pureSoA_7_0: def __getitem__(self, arg0: typing.SupportsInt) -> Particle_7_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_7_0) -> None: ... def get_super_particle(self, arg0: typing.SupportsInt) -> Particle_7_0: ... def set_super_particle( self, arg0: Particle_7_0, arg1: typing.SupportsInt ) -> None: ... @property def m_num_runtime_int(self) -> int: ... @property def m_num_runtime_real(self) -> int: ... @property def m_size(self) -> int: ...
[docs] class ParticleTileData_pureSoA_8_0: def __getitem__(self, arg0: typing.SupportsInt) -> Particle_8_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_8_0) -> None: ...
[docs] def get_super_particle(self, arg0: typing.SupportsInt) -> Particle_8_0: ...
[docs] def set_super_particle(
self, arg0: Particle_8_0, arg1: typing.SupportsInt ) -> None: ... @property def m_num_runtime_int(self) -> int: ... @property def m_num_runtime_real(self) -> int: ... @property def m_size(self) -> int: ...
class ParticleTile_16_4_0_0_arena: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 0 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_array_of_structs(self) -> ArrayOfStructs_16_4_arena: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_16_4_0_0: ... def get_struct_of_arrays(self) -> StructOfArrays_0_0_arena: ... @typing.overload def push_back(self, arg0: Particle_16_4) -> None: """ Add one particle to this tile. """ @typing.overload def push_back(self, arg0: Particle_16_4) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_16_4_0_0_arena) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_16_4_0_0_default: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 0 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_array_of_structs(self) -> ArrayOfStructs_16_4_default: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_16_4_0_0: ... def get_struct_of_arrays(self) -> StructOfArrays_0_0_default: ... @typing.overload def push_back(self, arg0: Particle_16_4) -> None: """ Add one particle to this tile. """ @typing.overload def push_back(self, arg0: Particle_16_4) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_16_4_0_0_default) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_16_4_0_0_pinned: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 0 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_16_4: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_16_4) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_array_of_structs(self) -> ArrayOfStructs_16_4_pinned: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_16_4_0_0: ... def get_struct_of_arrays(self) -> StructOfArrays_0_0_pinned: ... @typing.overload def push_back(self, arg0: Particle_16_4) -> None: """ Add one particle to this tile. """ @typing.overload def push_back(self, arg0: Particle_16_4) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_16_4_0_0_pinned) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_2_1_3_1_arena: NAI: typing.ClassVar[int] = 1 NAR: typing.ClassVar[int] = 3 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_5_2: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_5_2) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_array_of_structs(self) -> ArrayOfStructs_2_1_arena: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_2_1_3_1: ... def get_struct_of_arrays(self) -> StructOfArrays_3_1_arena: ... @typing.overload def push_back(self, arg0: Particle_2_1) -> None: """ Add one particle to this tile. """ @typing.overload def push_back(self, arg0: Particle_5_2) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_2_1_3_1_arena) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_2_1_3_1_default: NAI: typing.ClassVar[int] = 1 NAR: typing.ClassVar[int] = 3 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_5_2: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_5_2) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_array_of_structs(self) -> ArrayOfStructs_2_1_default: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_2_1_3_1: ... def get_struct_of_arrays(self) -> StructOfArrays_3_1_default: ... @typing.overload def push_back(self, arg0: Particle_2_1) -> None: """ Add one particle to this tile. """ @typing.overload def push_back(self, arg0: Particle_5_2) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_2_1_3_1_default) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_2_1_3_1_pinned: NAI: typing.ClassVar[int] = 1 NAR: typing.ClassVar[int] = 3 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_5_2: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_5_2) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_array_of_structs(self) -> ArrayOfStructs_2_1_pinned: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_2_1_3_1: ... def get_struct_of_arrays(self) -> StructOfArrays_3_1_pinned: ... @typing.overload def push_back(self, arg0: Particle_2_1) -> None: """ Add one particle to this tile. """ @typing.overload def push_back(self, arg0: Particle_5_2) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_2_1_3_1_pinned) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_3_0_arena: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 3 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_3_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_3_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_3_0: ... def get_struct_of_arrays(self) -> StructOfArrays_3_0_idcpu_arena: ... def push_back(self, arg0: Particle_3_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_3_0_arena) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_3_0_default: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 3 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_3_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_3_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_3_0: ... def get_struct_of_arrays(self) -> StructOfArrays_3_0_idcpu_default: ... def push_back(self, arg0: Particle_3_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_3_0_default) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_3_0_pinned: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 3 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_3_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_3_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_3_0: ... def get_struct_of_arrays(self) -> StructOfArrays_3_0_idcpu_pinned: ... def push_back(self, arg0: Particle_3_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_3_0_pinned) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_7_0_arena: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 7 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_7_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_7_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_7_0: ... def get_struct_of_arrays(self) -> StructOfArrays_7_0_idcpu_arena: ... def push_back(self, arg0: Particle_7_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(7)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_7_0_arena) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_7_0_default: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 7 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_7_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_7_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_7_0: ... def get_struct_of_arrays(self) -> StructOfArrays_7_0_idcpu_default: ... def push_back(self, arg0: Particle_7_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(7)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_7_0_default) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_7_0_pinned: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 7 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_7_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_7_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_7_0: ... def get_struct_of_arrays(self) -> StructOfArrays_7_0_idcpu_pinned: ... def push_back(self, arg0: Particle_7_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(7)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_7_0_pinned) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class ParticleTile_pureSoA_8_0_arena: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 8 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_8_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_8_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_8_0: ... def get_struct_of_arrays(self) -> StructOfArrays_8_0_idcpu_arena: ... def push_back(self, arg0: Particle_8_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(8)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_8_0_arena) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ...
[docs] class ParticleTile_pureSoA_8_0_default: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 8 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_8_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_8_0) -> None: ...
[docs] def capacity(self) -> int: ...
[docs] def define(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ...
[docs] def get_num_neighbors(self) -> int: ...
[docs] def get_particle_tile_data(self) -> ParticleTileData_pureSoA_8_0: ...
[docs] def get_struct_of_arrays(self) -> StructOfArrays_8_0_idcpu_default: ...
[docs] def push_back(self, arg0: Particle_8_0) -> None: """ Add one particle to this tile. """
@typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(8)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ...
[docs] def resize(self, arg0: typing.SupportsInt) -> None: ...
[docs] def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ...
[docs] def shrink_to_fit(self) -> None: ...
[docs] def swap(self, arg0: ParticleTile_pureSoA_8_0_default) -> None: ...
@property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ...
class ParticleTile_pureSoA_8_0_pinned: NAI: typing.ClassVar[int] = 0 NAR: typing.ClassVar[int] = 8 def __getitem__(self, arg0: typing.SupportsInt) -> Particle_8_0: ... def __init__(self) -> None: ... def __setitem__(self, arg0: typing.SupportsInt, arg1: Particle_8_0) -> None: ... def capacity(self) -> int: ... def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], arg4: Arena, ) -> None: ... def get_num_neighbors(self) -> int: ... def get_particle_tile_data(self) -> ParticleTileData_pureSoA_8_0: ... def get_struct_of_arrays(self) -> StructOfArrays_8_0_idcpu_pinned: ... def push_back(self, arg0: Particle_8_0) -> None: """ Add one particle to this tile. """ @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def push_back_int( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsInt, ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(8)" ], ) -> None: ... @typing.overload def push_back_real( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat, ) -> None: ... def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def shrink_to_fit(self) -> None: ... def swap(self, arg0: ParticleTile_pureSoA_8_0_pinned) -> None: ... @property def empty(self) -> bool: ... @property def num_int_comps(self) -> int: ... @property def num_neighbor_particles(self) -> int: ... @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: ... @property def num_real_particles(self) -> int: ... @property def num_runtime_int_comps(self) -> int: ... @property def num_runtime_real_comps(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def size(self) -> int: ... class Particle_16_4: NInt: typing.ClassVar[int] = 4 NReal: typing.ClassVar[int] = 16 @typing.overload def NextID(self) -> int: ... @typing.overload def NextID(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, *args, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, **kwargs, ) -> None: ... @typing.overload def __init__(self, **kwargs) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def cpu(self) -> int: ... @typing.overload def get_idata(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def get_idata(self) -> typing.Annotated[list[int], "FixedSize(4)"]: ... @typing.overload def get_rdata(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def get_rdata(self) -> typing.Annotated[list[float], "FixedSize(16)"]: ... def id(self) -> int: ... @typing.overload def pos(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def pos(self) -> RealVect: ... @typing.overload def setPos(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... @typing.overload def setPos(self, arg0: RealVect) -> None: ... @typing.overload def setPos( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def set_idata(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def set_idata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(4)" ], ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(16)" ], ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg1: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg1: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg1: typing.SupportsFloat) -> None: ...
[docs] class Particle_2_1: NInt: typing.ClassVar[int] = 1 NReal: typing.ClassVar[int] = 2 @typing.overload def NextID(self) -> int: ... @typing.overload def NextID(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, *args, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, **kwargs, ) -> None: ... @typing.overload def __init__(self, **kwargs) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ...
[docs] def cpu(self) -> int: ...
@typing.overload def get_idata(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def get_idata(self) -> typing.Annotated[list[int], "FixedSize(1)"]: ... @typing.overload def get_rdata(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def get_rdata(self) -> typing.Annotated[list[float], "FixedSize(2)"]: ...
[docs] def id(self) -> int: ...
@typing.overload def pos(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def pos(self) -> RealVect: ... @typing.overload def setPos(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... @typing.overload def setPos(self, arg0: RealVect) -> None: ... @typing.overload def setPos( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def set_idata(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def set_idata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(1)" ], ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(2)" ], ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg1: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg1: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg1: typing.SupportsFloat) -> None: ...
class Particle_3_0: NInt: typing.ClassVar[int] = 0 NReal: typing.ClassVar[int] = 3 @typing.overload def NextID(self) -> int: ... @typing.overload def NextID(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, *args, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, **kwargs, ) -> None: ... @typing.overload def __init__(self, **kwargs) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def cpu(self) -> int: ... @typing.overload def get_idata(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def get_idata(self) -> None: ... @typing.overload def get_rdata(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def get_rdata(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... def id(self) -> int: ... @typing.overload def pos(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def pos(self) -> RealVect: ... @typing.overload def setPos(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... @typing.overload def setPos(self, arg0: RealVect) -> None: ... @typing.overload def setPos( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def set_idata(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def set_idata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg1: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg1: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg1: typing.SupportsFloat) -> None: ... class Particle_5_2: NInt: typing.ClassVar[int] = 2 NReal: typing.ClassVar[int] = 5 @typing.overload def NextID(self) -> int: ... @typing.overload def NextID(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, *args, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, **kwargs, ) -> None: ... @typing.overload def __init__(self, **kwargs) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def cpu(self) -> int: ... @typing.overload def get_idata(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def get_idata(self) -> typing.Annotated[list[int], "FixedSize(2)"]: ... @typing.overload def get_rdata(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def get_rdata(self) -> typing.Annotated[list[float], "FixedSize(5)"]: ... def id(self) -> int: ... @typing.overload def pos(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def pos(self) -> RealVect: ... @typing.overload def setPos(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... @typing.overload def setPos(self, arg0: RealVect) -> None: ... @typing.overload def setPos( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def set_idata(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def set_idata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(5)" ], ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg1: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg1: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg1: typing.SupportsFloat) -> None: ... class Particle_7_0: NInt: typing.ClassVar[int] = 0 NReal: typing.ClassVar[int] = 7 @typing.overload def NextID(self) -> int: ... @typing.overload def NextID(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, *args, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, **kwargs, ) -> None: ... @typing.overload def __init__(self, **kwargs) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def cpu(self) -> int: ... @typing.overload def get_idata(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def get_idata(self) -> None: ... @typing.overload def get_rdata(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def get_rdata(self) -> typing.Annotated[list[float], "FixedSize(7)"]: ... def id(self) -> int: ... @typing.overload def pos(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def pos(self) -> RealVect: ... @typing.overload def setPos(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... @typing.overload def setPos(self, arg0: RealVect) -> None: ... @typing.overload def setPos( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def set_idata(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def set_idata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(7)" ], ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg1: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg1: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg1: typing.SupportsFloat) -> None: ... class Particle_8_0: NInt: typing.ClassVar[int] = 0 NReal: typing.ClassVar[int] = 8 @typing.overload def NextID(self) -> int: ... @typing.overload def NextID(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, *args, ) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, **kwargs, ) -> None: ... @typing.overload def __init__(self, **kwargs) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def cpu(self) -> int: ... @typing.overload def get_idata(self, arg0: typing.SupportsInt) -> None: ... @typing.overload def get_idata(self) -> None: ... @typing.overload def get_rdata(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def get_rdata(self) -> typing.Annotated[list[float], "FixedSize(8)"]: ... def id(self) -> int: ... @typing.overload def pos(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def pos(self) -> RealVect: ... @typing.overload def setPos(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: ... @typing.overload def setPos(self, arg0: RealVect) -> None: ... @typing.overload def setPos( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def set_idata(self, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None: ... @typing.overload def set_idata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(0)" ], ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def set_rdata( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(8)" ], ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg1: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg1: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg1: typing.SupportsFloat) -> None: ...
[docs] class Periodicity: __hash__: typing.ClassVar[None] = None
[docs] @staticmethod def non_periodic() -> Periodicity: """ Return the Periodicity object that is not periodic in any direction """
def __eq__(self, arg0: Periodicity) -> bool: ... def __getitem__(self, dir: typing.SupportsInt) -> bool: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: IntVect3D) -> None: ... def __repr__(self) -> str: ...
[docs] def is_periodic(self, dir: typing.SupportsInt) -> bool: ...
@property def domain(self) -> Box: """ Cell-centered domain Box "infinitely" long in non-periodic directions. """ @property def is_all_periodic(self) -> bool: ... @property def is_any_periodic(self) -> bool: ... @property def shift_IntVect(self, arg1: IntVect3D) -> list[IntVect3D]: ...
class PlotFileData: def DistributionMap(self, arg0: typing.SupportsInt) -> DistributionMapping: ... def __init__(self, arg0: str) -> None: ... def boxArray(self, arg0: typing.SupportsInt) -> BoxArray: ... def cellSize( self, arg0: typing.SupportsInt ) -> typing.Annotated[list[float], "FixedSize(3)"]: ... def coordSys(self) -> int: ... def finestLevel(self) -> int: ... @typing.overload def get(self, arg0: typing.SupportsInt) -> MultiFab: ... @typing.overload def get(self, arg0: typing.SupportsInt, arg1: str) -> MultiFab: ... def levelStep(self, arg0: typing.SupportsInt) -> int: ... def nComp(self) -> int: ... def nGrowVect(self, arg0: typing.SupportsInt) -> IntVect3D: ... def probDomain(self, arg0: typing.SupportsInt) -> Box: ... def probHi(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... def probLo(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... def probSize(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... def refRatio(self, arg0: typing.SupportsInt) -> int: ... def spaceDim(self) -> int: ... @typing.overload def syncDistributionMap(self, arg0: PlotFileData) -> None: ... @typing.overload def syncDistributionMap( self, arg0: typing.SupportsInt, arg1: PlotFileData ) -> None: ... def time(self) -> float: ... def varNames(self) -> Vector_string: ...
[docs] class RealBox: @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, x_lo: typing.SupportsFloat, y_lo: typing.SupportsFloat, z_lo: typing.SupportsFloat, x_hi: typing.SupportsFloat, y_hi: typing.SupportsFloat, z_hi: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__( self, a_lo: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], a_hi: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... @typing.overload def __init__( self, bx: Box, dx: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], base: typing.Annotated[ collections.abc.Sequence[typing.SupportsFloat], "FixedSize(3)" ], ) -> None: ... def __repr__(self) -> str: ... def __str(self) -> str: ... @typing.overload def contains(self, rb: XDim3, eps: typing.SupportsFloat = 0.0) -> bool: """ Determine if RealBox contains ``pt``, within tolerance ``eps`` """ @typing.overload def contains(self, rb: RealVect, eps: typing.SupportsFloat = 0.0) -> bool: """ Determine if RealBox contains ``pt``, within tolerance ``eps`` """ @typing.overload def contains(self, rb: RealBox, eps: typing.SupportsFloat = 0.0) -> bool: """ Determine if RealBox contains another RealBox, within tolerance ``eps`` """ @typing.overload def contains( self, rb: collections.abc.Sequence[typing.SupportsFloat], eps: typing.SupportsFloat = 0.0, ) -> bool: """ Determine if RealBox contains ``pt``, within tolerance ``eps`` """ @typing.overload def hi(self, arg0: typing.SupportsInt) -> float: """ Get ith component of ``xhi`` """ @typing.overload def hi(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Get all components of ``xhi`` """
[docs] def intersects(self, arg0: RealBox) -> bool: """ determine if box intersects with a box """
[docs] def length(self, arg0: typing.SupportsInt) -> float: ...
@typing.overload def lo(self, arg0: typing.SupportsInt) -> float: """ Get ith component of ``xlo`` """ @typing.overload def lo(self) -> typing.Annotated[list[float], "FixedSize(3)"]: """ Get all components of ``xlo`` """
[docs] def ok(self) -> bool: """ Determine if RealBox satisfies ``xlo[i]<xhi[i]`` for ``i=0,1,...,AMREX_SPACEDIM``. """
@typing.overload def setHi(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> None: """ Get all components of ``xlo`` """ @typing.overload def setHi(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: """ Get ith component of ``xhi`` """ @typing.overload def setLo(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> None: """ Get ith component of ``xlo`` """ @typing.overload def setLo(self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat) -> None: """ Get all components of ``xlo`` """
[docs] def volume(self) -> float: ...
@property def xhi(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ... @property def xlo(self) -> typing.Annotated[list[float], "FixedSize(3)"]: ...
[docs] class RealVect: __hash__: typing.ClassVar[None] = None
[docs] @staticmethod def unit_vector() -> RealVect: ...
[docs] @staticmethod def zero_vector() -> RealVect: ...
[docs] def BASISREALV(self: typing.SupportsInt) -> RealVect: """ return basis vector in given coordinate direction """
@typing.overload def __add__(self, arg0: typing.SupportsFloat) -> RealVect: ... @typing.overload def __add__(self, arg0: RealVect) -> RealVect: ... def __eq__(self, arg0: RealVect) -> bool: ... def __ge__(self, arg0: RealVect) -> bool: ... def __getitem__(self, arg0: typing.SupportsInt) -> float: ... def __gt__(self, arg0: RealVect) -> bool: ... @typing.overload def __iadd__(self, arg0: typing.SupportsFloat) -> RealVect: ... @typing.overload def __iadd__(self, arg0: RealVect) -> RealVect: ... @typing.overload def __imul__(self, arg0: typing.SupportsFloat) -> RealVect: ... @typing.overload def __imul__(self, arg0: RealVect) -> RealVect: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @typing.overload def __init__(self, arg0: IntVect3D) -> None: ... @typing.overload def __init__( self, arg0: collections.abc.Sequence[typing.SupportsFloat] ) -> None: ... @typing.overload def __init__(self, arg0: typing.SupportsFloat) -> None: ... @typing.overload def __isub__(self, arg0: typing.SupportsFloat) -> RealVect: ... @typing.overload def __isub__(self, arg0: RealVect) -> RealVect: ... def __itruediv__(self, arg0: typing.SupportsFloat) -> RealVect: ... def __le__(self, arg0: RealVect) -> bool: ... def __lt__(self, arg0: RealVect) -> bool: ... @typing.overload def __mul__(self, arg0: RealVect) -> RealVect: ... @typing.overload def __mul__(self, arg0: typing.SupportsFloat) -> RealVect: ... def __ne__(self, arg0: RealVect) -> bool: ... def __neg__(self) -> RealVect: ... def __pos__(self) -> RealVect: ... def __radd__(self, arg0: typing.SupportsFloat) -> RealVect: ... def __repr__(self) -> str: ... def __rmul__(self, arg0: typing.SupportsFloat) -> RealVect: ... def __rsub__(self, arg0: typing.SupportsFloat) -> RealVect: ... def __rtruediv__(self, arg0: typing.SupportsFloat) -> RealVect: ... def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> float: ... def __str(self) -> str: ... @typing.overload def __sub__(self, arg0: RealVect) -> RealVect: ... @typing.overload def __sub__(self, arg0: typing.SupportsFloat) -> RealVect: ... @typing.overload def __truediv__(self, arg0: typing.SupportsFloat) -> RealVect: ... @typing.overload def __truediv__(self, arg0: RealVect) -> RealVect: ...
[docs] def ceil(self) -> IntVect3D: """ Return an ``IntVect`` whose components are the std::ceil of the vector components """
[docs] def crossProduct(self, arg0: RealVect) -> RealVect: """ Return cross product of this vector with another """
[docs] def dotProduct(self, arg0: RealVect) -> float: """ Return dot product of this vector with another """
[docs] def floor(self) -> IntVect3D: """ Return an ``IntVect`` whose components are the std::floor of the vector components """
[docs] def max(self, arg0: RealVect) -> RealVect: """ Replace vector with the component-wise maxima of this vector and another """
[docs] def maxDir(self, arg0: bool) -> int: """ direction or index of maximum value of this vector """
[docs] def min(self, arg0: RealVect) -> RealVect: """ Replace vector with the component-wise minima of this vector and another """
[docs] def minDir(self, arg0: bool) -> int: """ direction or index of minimum value of this vector """
[docs] def round(self) -> IntVect3D: """ Return an ``IntVect`` whose components are the std::round of the vector components """
[docs] def scale(self, arg0: typing.SupportsFloat) -> RealVect: """ Multiplify each component of this vector by a scalar """
@property def product(self) -> float: """ Product of entries of this vector """ @property def radSquared(self) -> float: """ Length squared of this vector """ @property def sum(self) -> float: """ Sum of the components of this vector """ @property def vectorLength(self) -> float: """ Length or 2-Norm of this vector """
class SmallMatrix_1x6_F_SI1_double: @staticmethod def zero() -> SmallMatrix_1x6_F_SI1_double: ... def __add__( self, arg0: SmallMatrix_1x6_F_SI1_double ) -> SmallMatrix_1x6_F_SI1_double: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_1x6_F_SI1_double) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64] ) -> None: ... def __mul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_1x6_F_SI1_double: ... def __neg__(self) -> SmallMatrix_1x6_F_SI1_double: ... def __repr__(self) -> str: ... def __rmul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_1x6_F_SI1_double: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def __sub__( self, arg0: SmallMatrix_1x6_F_SI1_double ) -> SmallMatrix_1x6_F_SI1_double: ... def dot(self, arg0: SmallMatrix_1x6_F_SI1_double) -> float: ... def prod(self) -> float: ... def set_val(self, arg0: typing.SupportsFloat) -> SmallMatrix_1x6_F_SI1_double: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ @property def T(self) -> SmallMatrix_6x1_F_SI1_double: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class SmallMatrix_1x6_F_SI1_float: @staticmethod def zero() -> SmallMatrix_1x6_F_SI1_float: ... def __add__( self, arg0: SmallMatrix_1x6_F_SI1_float ) -> SmallMatrix_1x6_F_SI1_float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_1x6_F_SI1_float) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32] ) -> None: ... def __mul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_1x6_F_SI1_float: ... def __neg__(self) -> SmallMatrix_1x6_F_SI1_float: ... def __repr__(self) -> str: ... def __rmul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_1x6_F_SI1_float: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def __sub__( self, arg0: SmallMatrix_1x6_F_SI1_float ) -> SmallMatrix_1x6_F_SI1_float: ... def dot(self, arg0: SmallMatrix_1x6_F_SI1_float) -> float: ... def prod(self) -> float: ... def set_val(self, arg0: typing.SupportsFloat) -> SmallMatrix_1x6_F_SI1_float: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ @property def T(self) -> SmallMatrix_6x1_F_SI1_float: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class SmallMatrix_1x6_F_SI1_longdouble: @staticmethod def zero() -> SmallMatrix_1x6_F_SI1_longdouble: ... def __add__( self, arg0: SmallMatrix_1x6_F_SI1_longdouble ) -> SmallMatrix_1x6_F_SI1_longdouble: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_1x6_F_SI1_longdouble) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.longdouble] ) -> None: ... def __mul__( self, arg0: typing.SupportsFloat ) -> SmallMatrix_1x6_F_SI1_longdouble: ... def __neg__(self) -> SmallMatrix_1x6_F_SI1_longdouble: ... def __repr__(self) -> str: ... def __rmul__( self, arg0: typing.SupportsFloat ) -> SmallMatrix_1x6_F_SI1_longdouble: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def __sub__( self, arg0: SmallMatrix_1x6_F_SI1_longdouble ) -> SmallMatrix_1x6_F_SI1_longdouble: ... def dot(self, arg0: SmallMatrix_1x6_F_SI1_longdouble) -> float: ... def prod(self) -> float: ... def set_val( self, arg0: typing.SupportsFloat ) -> SmallMatrix_1x6_F_SI1_longdouble: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ @property def T(self) -> SmallMatrix_6x1_F_SI1_longdouble: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class SmallMatrix_6x1_F_SI1_double: @staticmethod def zero() -> SmallMatrix_6x1_F_SI1_double: ... def __add__( self, arg0: SmallMatrix_6x1_F_SI1_double ) -> SmallMatrix_6x1_F_SI1_double: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_6x1_F_SI1_double) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64] ) -> None: ... def __mul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x1_F_SI1_double: ... def __neg__(self) -> SmallMatrix_6x1_F_SI1_double: ... def __repr__(self) -> str: ... def __rmul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x1_F_SI1_double: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def __sub__( self, arg0: SmallMatrix_6x1_F_SI1_double ) -> SmallMatrix_6x1_F_SI1_double: ... def dot(self, arg0: SmallMatrix_6x1_F_SI1_double) -> float: ... def prod(self) -> float: ... def set_val(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x1_F_SI1_double: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ @property def T(self) -> SmallMatrix_1x6_F_SI1_double: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class SmallMatrix_6x1_F_SI1_float: @staticmethod def zero() -> SmallMatrix_6x1_F_SI1_float: ... def __add__( self, arg0: SmallMatrix_6x1_F_SI1_float ) -> SmallMatrix_6x1_F_SI1_float: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_6x1_F_SI1_float) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32] ) -> None: ... def __mul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x1_F_SI1_float: ... def __neg__(self) -> SmallMatrix_6x1_F_SI1_float: ... def __repr__(self) -> str: ... def __rmul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x1_F_SI1_float: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def __sub__( self, arg0: SmallMatrix_6x1_F_SI1_float ) -> SmallMatrix_6x1_F_SI1_float: ... def dot(self, arg0: SmallMatrix_6x1_F_SI1_float) -> float: ... def prod(self) -> float: ... def set_val(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x1_F_SI1_float: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ @property def T(self) -> SmallMatrix_1x6_F_SI1_float: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class SmallMatrix_6x1_F_SI1_longdouble: @staticmethod def zero() -> SmallMatrix_6x1_F_SI1_longdouble: ... def __add__( self, arg0: SmallMatrix_6x1_F_SI1_longdouble ) -> SmallMatrix_6x1_F_SI1_longdouble: ... @typing.overload def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_6x1_F_SI1_longdouble) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.longdouble] ) -> None: ... def __mul__( self, arg0: typing.SupportsFloat ) -> SmallMatrix_6x1_F_SI1_longdouble: ... def __neg__(self) -> SmallMatrix_6x1_F_SI1_longdouble: ... def __repr__(self) -> str: ... def __rmul__( self, arg0: typing.SupportsFloat ) -> SmallMatrix_6x1_F_SI1_longdouble: ... @typing.overload def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... def __sub__( self, arg0: SmallMatrix_6x1_F_SI1_longdouble ) -> SmallMatrix_6x1_F_SI1_longdouble: ... def dot(self, arg0: SmallMatrix_6x1_F_SI1_longdouble) -> float: ... def prod(self) -> float: ... def set_val( self, arg0: typing.SupportsFloat ) -> SmallMatrix_6x1_F_SI1_longdouble: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ @property def T(self) -> SmallMatrix_1x6_F_SI1_longdouble: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ...
[docs] class SmallMatrix_6x6_F_SI1_double:
[docs] @staticmethod def identity() -> SmallMatrix_6x6_F_SI1_double: ...
[docs] @staticmethod def zero() -> SmallMatrix_6x6_F_SI1_double: ...
def __add__( self, arg0: SmallMatrix_6x6_F_SI1_double ) -> SmallMatrix_6x6_F_SI1_double: ... def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_6x6_F_SI1_double) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64] ) -> None: ... @typing.overload def __mul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x6_F_SI1_double: ... @typing.overload def __mul__( self, arg0: SmallMatrix_6x6_F_SI1_double ) -> SmallMatrix_6x6_F_SI1_double: ... @typing.overload def __mul__( self, arg0: SmallMatrix_6x1_F_SI1_double ) -> SmallMatrix_6x1_F_SI1_double: ... def __neg__(self) -> SmallMatrix_6x6_F_SI1_double: ... def __repr__(self) -> str: ... @typing.overload def __rmul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x6_F_SI1_double: ... @typing.overload def __rmul__( self, arg0: SmallMatrix_1x6_F_SI1_double ) -> SmallMatrix_1x6_F_SI1_double: ... def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... def __sub__( self, arg0: SmallMatrix_6x6_F_SI1_double ) -> SmallMatrix_6x6_F_SI1_double: ...
[docs] def dot(self, arg0: SmallMatrix_6x6_F_SI1_double) -> float: ...
[docs] def prod(self) -> float: ...
[docs] def set_val(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x6_F_SI1_double: ...
[docs] def sum(self) -> float: ...
[docs] def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """
[docs] def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """
[docs] def trace(self) -> float: ...
[docs] def transpose_in_place(self) -> SmallMatrix_6x6_F_SI1_double: ...
@property def T(self) -> SmallMatrix_6x6_F_SI1_double: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ...
class SmallMatrix_6x6_F_SI1_float: @staticmethod def identity() -> SmallMatrix_6x6_F_SI1_float: ... @staticmethod def zero() -> SmallMatrix_6x6_F_SI1_float: ... def __add__( self, arg0: SmallMatrix_6x6_F_SI1_float ) -> SmallMatrix_6x6_F_SI1_float: ... def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_6x6_F_SI1_float) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32] ) -> None: ... @typing.overload def __mul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x6_F_SI1_float: ... @typing.overload def __mul__( self, arg0: SmallMatrix_6x6_F_SI1_float ) -> SmallMatrix_6x6_F_SI1_float: ... @typing.overload def __mul__( self, arg0: SmallMatrix_6x1_F_SI1_float ) -> SmallMatrix_6x1_F_SI1_float: ... def __neg__(self) -> SmallMatrix_6x6_F_SI1_float: ... def __repr__(self) -> str: ... @typing.overload def __rmul__(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x6_F_SI1_float: ... @typing.overload def __rmul__( self, arg0: SmallMatrix_1x6_F_SI1_float ) -> SmallMatrix_1x6_F_SI1_float: ... def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... def __sub__( self, arg0: SmallMatrix_6x6_F_SI1_float ) -> SmallMatrix_6x6_F_SI1_float: ... def dot(self, arg0: SmallMatrix_6x6_F_SI1_float) -> float: ... def prod(self) -> float: ... def set_val(self, arg0: typing.SupportsFloat) -> SmallMatrix_6x6_F_SI1_float: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ def trace(self) -> float: ... def transpose_in_place(self) -> SmallMatrix_6x6_F_SI1_float: ... @property def T(self) -> SmallMatrix_6x6_F_SI1_float: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class SmallMatrix_6x6_F_SI1_longdouble: @staticmethod def identity() -> SmallMatrix_6x6_F_SI1_longdouble: ... @staticmethod def zero() -> SmallMatrix_6x6_F_SI1_longdouble: ... def __add__( self, arg0: SmallMatrix_6x6_F_SI1_longdouble ) -> SmallMatrix_6x6_F_SI1_longdouble: ... def __getitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], ) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: SmallMatrix_6x6_F_SI1_longdouble) -> None: ... @typing.overload def __init__( self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.longdouble] ) -> None: ... @typing.overload def __mul__( self, arg0: typing.SupportsFloat ) -> SmallMatrix_6x6_F_SI1_longdouble: ... @typing.overload def __mul__( self, arg0: SmallMatrix_6x6_F_SI1_longdouble ) -> SmallMatrix_6x6_F_SI1_longdouble: ... @typing.overload def __mul__( self, arg0: SmallMatrix_6x1_F_SI1_longdouble ) -> SmallMatrix_6x1_F_SI1_longdouble: ... def __neg__(self) -> SmallMatrix_6x6_F_SI1_longdouble: ... def __repr__(self) -> str: ... @typing.overload def __rmul__( self, arg0: typing.SupportsFloat ) -> SmallMatrix_6x6_F_SI1_longdouble: ... @typing.overload def __rmul__( self, arg0: SmallMatrix_1x6_F_SI1_longdouble ) -> SmallMatrix_1x6_F_SI1_longdouble: ... def __setitem__( self, arg0: typing.Annotated[ collections.abc.Sequence[typing.SupportsInt], "FixedSize(2)" ], arg1: typing.SupportsFloat, ) -> None: ... def __sub__( self, arg0: SmallMatrix_6x6_F_SI1_longdouble ) -> SmallMatrix_6x6_F_SI1_longdouble: ... def dot(self, arg0: SmallMatrix_6x6_F_SI1_longdouble) -> float: ... def prod(self) -> float: ... def set_val( self, arg0: typing.SupportsFloat ) -> SmallMatrix_6x6_F_SI1_longdouble: ... def sum(self) -> float: ... def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- cupy.array A cupy 2-dimensional array. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into an SmallMatrix. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- np.array A NumPy 2-dimensional array. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a SmallMatrix, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.SmallMatrix_* A SmallMatrix class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- xp.array A NumPy or CuPy 2-dimensional array. """ def trace(self) -> float: ... def transpose_in_place(self) -> SmallMatrix_6x6_F_SI1_longdouble: ... @property def T(self) -> SmallMatrix_6x6_F_SI1_longdouble: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ... @property def column_size(self) -> int: ... @property def order(self) -> str: ... @property def row_size(self) -> int: ... @property def size(self) -> int: ... @property def starting_index(self) -> int: ... class StructOfArrays_0_0_arena: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_arena], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_arena], "FixedSize(0)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_0_0_default: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... @typing.overload def get_int_data(self) -> typing.Annotated[list[PODVector_int_std], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_std], "FixedSize(0)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_0_0_pinned: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_pinned], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_pinned], "FixedSize(0)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_3_0_idcpu_arena: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_arena: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_arena], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_arena], "FixedSize(3)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_3_0_idcpu_default: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_std: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data(self) -> typing.Annotated[list[PODVector_int_std], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_std], "FixedSize(3)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_3_0_idcpu_pinned: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_pinned: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_pinned], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_pinned], "FixedSize(3)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_3_1_arena: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_arena], "FixedSize(1)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_arena], "FixedSize(3)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_3_1_default: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... @typing.overload def get_int_data(self) -> typing.Annotated[list[PODVector_int_std], "FixedSize(1)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_std], "FixedSize(3)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_3_1_pinned: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_pinned], "FixedSize(1)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_pinned], "FixedSize(3)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_7_0_idcpu_arena: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_arena: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_arena], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_arena], "FixedSize(7)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_7_0_idcpu_default: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_std: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data(self) -> typing.Annotated[list[PODVector_int_std], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_std], "FixedSize(7)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_std: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_7_0_idcpu_pinned: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_pinned: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_pinned], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_pinned], "FixedSize(7)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class StructOfArrays_8_0_idcpu_arena: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_arena: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_arena], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_arena], "FixedSize(8)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_arena: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """
[docs] class StructOfArrays_8_0_idcpu_default: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """
[docs] def define(
self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ...
[docs] def get_idcpu_data(self) -> PODVector_uint64_std: """ Get access to a particle IdCPU component Array """
@typing.overload def get_int_data(self) -> typing.Annotated[list[PODVector_int_std], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_std: """ Get access to a particle Real component Array (compile-time and runtime component) """
[docs] def get_num_neighbors(self) -> int: ...
@typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_std], "FixedSize(8)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_std: """ Get access to a particle Real component Array (compile-time and runtime component) """
[docs] def resize(self, arg0: typing.SupportsInt) -> None: ...
[docs] def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ...
[docs] def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """
[docs] def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """
[docs] def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """
@property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """
class StructOfArrays_8_0_idcpu_pinned: def __init__(self) -> None: ... def __len__(self) -> int: """ Get the number of particles """ def define( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: collections.abc.Sequence[str], arg3: collections.abc.Sequence[str], ) -> None: ... def get_idcpu_data(self) -> PODVector_uint64_pinned: """ Get access to a particle IdCPU component Array """ @typing.overload def get_int_data( self, ) -> typing.Annotated[list[PODVector_int_pinned], "FixedSize(0)"]: """ Get access to the particle Int Arrays (only compile-time components) """ @typing.overload def get_int_data(self, index: typing.SupportsInt) -> PODVector_int_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def get_num_neighbors(self) -> int: ... @typing.overload def get_real_data( self, ) -> typing.Annotated[list[PODVector_real_pinned], "FixedSize(8)"]: """ Get access to the particle Real Arrays (only compile-time components) """ @typing.overload def get_real_data(self, index: typing.SupportsInt) -> PODVector_real_pinned: """ Get access to a particle Real component Array (compile-time and runtime component) """ def resize(self, arg0: typing.SupportsInt) -> None: ... def set_num_neighbors(self, arg0: typing.SupportsInt) -> None: ... def to_cupy(self, copy=False): """ Provide CuPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False): """ Provide NumPy views into a StructOfArrays. Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ def to_xp(self, copy=False): """ Provide NumPy or CuPy views into a StructOfArrays, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code Parameters ---------- self : amrex.StructOfArrays_* A StructOfArrays class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). Returns ------- namedtuple A tuple with real and int components that are each dicts of 1D NumPy or CuPy arrays. The dictionary key order is the same as in the C++ component order. For pure SoA particle layouts, an additional component idcpu with global particle indices is populated. """ @property def has_idcpu(self) -> bool: """ In pure SoA particle layout, idcpu is an array in the SoA """ @property def int_names(self) -> list[str]: """ Names for the int SoA components """ @property def num_int_comps(self) -> int: """ Get the number of compile-time + runtime Int components """ @property def num_particles(self) -> int: ... @property def num_real_comps(self) -> int: """ Get the number of compile-time + runtime Real components """ @property def num_real_particles(self) -> int: ... @property def num_total_particles(self) -> int: ... @property def real_names(self) -> list[str]: """ Names for the Real SoA components """ @property def size(self) -> int: """ Get the number of particles """ class Vector_Box: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: Box) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_Box) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_Box: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> Box: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> Box: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Box) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Box) -> None: ... def __iter__(self) -> collections.abc.Iterator[Box]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_Box) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: Box) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_Box) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: Box) -> None: ... def append(self, x: Box) -> None: """ Add an item to the end of the list """ def clear(self) -> None: """ Clear the contents """ def count(self, x: Box) -> int: """ Return the number of times ``x`` appears in the list """ @typing.overload def extend(self, L: Vector_Box) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """ def insert(self, i: typing.SupportsInt, x: Box) -> None: """ Insert an item at a given position. """ @typing.overload def pop(self) -> Box: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> Box: """ Remove and return the item at index ``i`` """ def remove(self, x: Box) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """ def size(self) -> int: ... class Vector_BoxArray: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: BoxArray) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_BoxArray) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_BoxArray: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> BoxArray: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> BoxArray: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_BoxArray) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_BoxArray) -> None: ... def __iter__(self) -> collections.abc.Iterator[BoxArray]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_BoxArray) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: BoxArray) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_BoxArray) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: BoxArray) -> None: ... def append(self, x: BoxArray) -> None: """ Add an item to the end of the list """ def clear(self) -> None: """ Clear the contents """ def count(self, x: BoxArray) -> int: """ Return the number of times ``x`` appears in the list """ @typing.overload def extend(self, L: Vector_BoxArray) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """ def insert(self, i: typing.SupportsInt, x: BoxArray) -> None: """ Insert an item at a given position. """ @typing.overload def pop(self) -> BoxArray: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> BoxArray: """ Remove and return the item at index ``i`` """ def remove(self, x: BoxArray) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """ def size(self) -> int: ... class Vector_DistributionMapping: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: DistributionMapping) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_DistributionMapping) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_DistributionMapping: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> DistributionMapping: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> DistributionMapping: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_DistributionMapping) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_DistributionMapping) -> None: ... def __iter__(self) -> collections.abc.Iterator[DistributionMapping]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_DistributionMapping) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: DistributionMapping ) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_DistributionMapping) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: DistributionMapping ) -> None: ... def append(self, x: DistributionMapping) -> None: """ Add an item to the end of the list """ def clear(self) -> None: """ Clear the contents """ def count(self, x: DistributionMapping) -> int: """ Return the number of times ``x`` appears in the list """ @typing.overload def extend(self, L: Vector_DistributionMapping) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """ def insert(self, i: typing.SupportsInt, x: DistributionMapping) -> None: """ Insert an item at a given position. """ @typing.overload def pop(self) -> DistributionMapping: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> DistributionMapping: """ Remove and return the item at index ``i`` """ def remove(self, x: DistributionMapping) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """ def size(self) -> int: ... class Vector_Geometry: def __bool__(self) -> bool: """ Check whether the list is nonempty """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ @typing.overload def __getitem__(self, s: slice) -> Vector_Geometry: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> Geometry: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> Geometry: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Geometry) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Geometry) -> None: ... def __iter__(self) -> collections.abc.Iterator[Geometry]: ... def __len__(self) -> int: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: Geometry) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_Geometry) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: Geometry) -> None: ... def append(self, x: Geometry) -> None: """ Add an item to the end of the list """ def clear(self) -> None: """ Clear the contents """ @typing.overload def extend(self, L: Vector_Geometry) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """ def insert(self, i: typing.SupportsInt, x: Geometry) -> None: """ Insert an item at a given position. """ @typing.overload def pop(self) -> Geometry: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> Geometry: """ Remove and return the item at index ``i`` """ def size(self) -> int: ... class Vector_IntVect: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: IntVect3D) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_IntVect) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_IntVect: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> IntVect3D: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_IntVect) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_IntVect) -> None: ... def __iter__(self) -> collections.abc.Iterator[IntVect3D]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_IntVect) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: IntVect3D) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_IntVect) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: IntVect3D) -> None: ... def append(self, x: IntVect3D) -> None: """ Add an item to the end of the list """ def clear(self) -> None: """ Clear the contents """ def count(self, x: IntVect3D) -> int: """ Return the number of times ``x`` appears in the list """ @typing.overload def extend(self, L: Vector_IntVect) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """ def insert(self, i: typing.SupportsInt, x: IntVect3D) -> None: """ Insert an item at a given position. """ @typing.overload def pop(self) -> IntVect3D: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> IntVect3D: """ Remove and return the item at index ``i`` """ def remove(self, x: IntVect3D) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """ def size(self) -> int: ... class Vector_Long: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: typing.SupportsInt) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_Long) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_Long: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Long) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Long) -> None: ... def __iter__(self) -> collections.abc.Iterator[int]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_Long) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_Long) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... def append(self, x: typing.SupportsInt) -> None: """ Add an item to the end of the list """ def clear(self) -> None: """ Clear the contents """ def count(self, x: typing.SupportsInt) -> int: """ Return the number of times ``x`` appears in the list """ @typing.overload def extend(self, L: Vector_Long) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """ def insert(self, i: typing.SupportsInt, x: typing.SupportsInt) -> None: """ Insert an item at a given position. """ @typing.overload def pop(self) -> int: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> int: """ Remove and return the item at index ``i`` """ def remove(self, x: typing.SupportsInt) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """ def size(self) -> int: ... @property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class Vector_Real: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: typing.SupportsFloat) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_Real) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_Real: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> float: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Real) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_Real) -> None: ... def __iter__(self) -> collections.abc.Iterator[float]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_Real) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_Real) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsFloat ) -> None: ...
[docs] def append(self, x: typing.SupportsFloat) -> None: """ Add an item to the end of the list """
[docs] def clear(self) -> None: """ Clear the contents """
[docs] def count(self, x: typing.SupportsFloat) -> int: """ Return the number of times ``x`` appears in the list """
@typing.overload def extend(self, L: Vector_Real) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """
[docs] def insert(self, i: typing.SupportsInt, x: typing.SupportsFloat) -> None: """ Insert an item at a given position. """
@typing.overload def pop(self) -> float: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> float: """ Remove and return the item at index ``i`` """
[docs] def remove(self, x: typing.SupportsFloat) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """
[docs] def size(self) -> int: ...
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class Vector_int: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: typing.SupportsInt) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_int) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_int: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> int: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_int) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_int) -> None: ... def __iter__(self) -> collections.abc.Iterator[int]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_int) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_int) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> None: ...
[docs] def append(self, x: typing.SupportsInt) -> None: """ Add an item to the end of the list """
[docs] def clear(self) -> None: """ Clear the contents """
[docs] def count(self, x: typing.SupportsInt) -> int: """ Return the number of times ``x`` appears in the list """
@typing.overload def extend(self, L: Vector_int) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """
[docs] def insert(self, i: typing.SupportsInt, x: typing.SupportsInt) -> None: """ Insert an item at a given position. """
@typing.overload def pop(self) -> int: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> int: """ Remove and return the item at index ``i`` """
[docs] def remove(self, x: typing.SupportsInt) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """
[docs] def size(self) -> int: ...
@property def __array_interface__(self) -> dict: ... @property def __cuda_array_interface__(self) -> dict: ...
[docs] class Vector_string: __hash__: typing.ClassVar[None] = None def __bool__(self) -> bool: """ Check whether the list is nonempty """ def __contains__(self, x: str) -> bool: """ Return true the container contains ``x`` """ @typing.overload def __delitem__(self, arg0: typing.SupportsInt) -> None: """ Delete the list elements at index ``i`` """ @typing.overload def __delitem__(self, arg0: slice) -> None: """ Delete list elements using a slice object """ def __eq__(self, arg0: Vector_string) -> bool: ... @typing.overload def __getitem__(self, s: slice) -> Vector_string: """ Retrieve list elements using a slice object """ @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> str: ... @typing.overload def __getitem__(self, arg0: typing.SupportsInt) -> str: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_string) -> None: """ Copy constructor """ @typing.overload def __init__(self, arg0: collections.abc.Iterable) -> None: ... @typing.overload def __init__(self) -> None: ... @typing.overload def __init__(self, arg0: Vector_string) -> None: ... def __iter__(self) -> collections.abc.Iterator[str]: ... def __len__(self) -> int: ... def __ne__(self, arg0: Vector_string) -> bool: ... @typing.overload def __repr__(self) -> str: """ Return the canonical string representation of this list. """ @typing.overload def __repr__(self) -> str: ... @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: str) -> None: ... @typing.overload def __setitem__(self, arg0: slice, arg1: Vector_string) -> None: """ Assign list elements using a slice object """ @typing.overload def __setitem__(self, arg0: typing.SupportsInt, arg1: str) -> None: ...
[docs] def append(self, x: str) -> None: """ Add an item to the end of the list """
[docs] def clear(self) -> None: """ Clear the contents """
[docs] def count(self, x: str) -> int: """ Return the number of times ``x`` appears in the list """
@typing.overload def extend(self, L: Vector_string) -> None: """ Extend the list by appending all the items in the given list """ @typing.overload def extend(self, L: collections.abc.Iterable) -> None: """ Extend the list by appending all the items in the given list """
[docs] def insert(self, i: typing.SupportsInt, x: str) -> None: """ Insert an item at a given position. """
@typing.overload def pop(self) -> str: """ Remove and return the last item """ @typing.overload def pop(self, i: typing.SupportsInt) -> str: """ Remove and return the item at index ``i`` """
[docs] def remove(self, x: str) -> None: """ Remove the first item from the list whose value is x. It is an error if there is no such item. """
[docs] def size(self) -> int: ...
class VisMF: @staticmethod @typing.overload def Read(name: str) -> MultiFab: """ Reads a MultiFab from the specified file """ @staticmethod @typing.overload def Read(name: str, mf: MultiFab) -> None: """ Reads a MultiFab from the specified file into the given MultiFab. The BoxArray on the disk must match the BoxArray * in mf """ @staticmethod def Write(mf: FabArray_FArrayBox, name: str) -> int: """ Writes a Multifab to the specified file """
[docs] class XDim3: def __init__( self, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsFloat, ) -> None: ... @property def x(self) -> float: ... @x.setter def x(self, arg0: typing.SupportsFloat) -> None: ... @property def y(self) -> float: ... @y.setter def y(self, arg0: typing.SupportsFloat) -> None: ... @property def z(self) -> float: ... @z.setter def z(self, arg0: typing.SupportsFloat) -> None: ...
class iMultiFab(FabArray_IArrayBox): @staticmethod def __iter__(imfab): ... @staticmethod def finalize() -> None: ... @staticmethod def initialize() -> None: ... def __getitem__(self, index, with_internal_ghosts=False): """ Returns slice of the MultiFab using global indexing, as a numpy array. This uses numpy array indexing, with the indexing relative to the global array. The slice ranges can cross multiple blocks and the result will be gathered into a single array. In an MPI context, this is a global operation. An "allgather" is performed so that the full result is returned on all processors. Note that the index is in fortran ordering and that 0 is the lower boundary of the whole domain. The default range of the indices includes only the valid cells. The ":" index will include all of the valid cels and no ghost cells. The ghost cells can be accessed using imaginary numbers, with negative imaginary numbers for the lower ghost cells, and positive for the upper ghost cells. The index "[-1j]" for example refers to the first lower ghost cell, and "[1j]" to the first upper ghost cell. To access all cells, ghosts and valid cells, use an empty tuple for the index, i.e. "[()]". Parameters ---------- index : the index using numpy style indexing Index of the slice to return. with_internal_ghosts : bool, optional Whether to include internal ghost cells. When true, data from ghost cells may be used that overlaps valid cells. """ @typing.overload def __init__(self) -> None: """ Constructs an empty (i)MultiFab. Data can be defined at a later time using the define member functions inherited from FabArray. """ @typing.overload def __init__(self, a: Arena) -> None: """ Constructs an empty (i)MultiFab. Data can be defined at a later time using the define member functions. If ``define`` is called later with a nullptr as MFInfo's arena, the default Arena ``a`` will be used. If the arena in MFInfo is not a nullptr, the MFInfo's arena will be used. """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt, info: MFInfo, factory: FabFactory_IArrayBox, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt, info: MFInfo, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: typing.SupportsInt, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: IntVect3D, info: MFInfo, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: IntVect3D, info: MFInfo, factory: FabFactory_IArrayBox, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ @typing.overload def __init__( self, bxs: BoxArray, dm: DistributionMapping, ncomp: typing.SupportsInt, ngrow: IntVect3D, ) -> None: """ Constructs an (i)MultiFab. The size of the FArrayBox is given by the Box grown by \\p ngrow, and the number of components is given by \\p ncomp. If \\p info is set to not allocating memory, then no FArrayBoxes are allocated at this time but can be defined later. Parameters ---------- bxs : a valid region dm : a DistributionMapping ncomp : number of components ngrow : number of cells the region grows info : (i)MultiFab info, including allocation Arena factory : FArrayBoxFactory for embedded boundaries """ def __repr__(self) -> str: ... def __setitem__(self, index, value): """ Sets the slice of the MultiFab using global indexing. This uses numpy array indexing, with the indexing relative to the global array. The slice ranges can cross multiple blocks and the value will be distributed accordingly. Note that this will apply the value to both valid and ghost cells. In an MPI context, this is a local operation. On each processor, the blocks within the slice range will be set to the value. Note that the index is in fortran ordering and that 0 is the lower boundary of the whole domain. The default range of the indices includes only the valid cells. The ":" index will include all of the valid cels and no ghost cells. The ghost cells can be accessed using imaginary numbers, with negative imaginary numbers for the lower ghost cells, and positive for the upper ghost cells. The index "[-1j]" for example refers to the first lower ghost cell, and "[1j]" to the first upper ghost cell. To access all cells, ghosts and valid cells, use an empty tuple for the index, i.e. "[()]". Parameters ---------- index : the index using numpy style indexing Index of the slice to return. value : scalar or array Input value to assign to the specified slice of the MultiFab """ def add( self, src: iMultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Add src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ def box_array(self: FabArrayBase) -> BoxArray: ... def copy(self): """ Create a copy of this MultiFab, using the same Arena. Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX Returns ------- amrex.MultiFab A copy of this MultiFab. """ def copymf( self, src: iMultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Copy from src to self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. The copy is local """ def divi( self, mf: iMultiFab, strt_comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ This function divides the values of the cells in mf from the corresponding cells of this MultiFab. mf is required to have the same BoxArray or "valid region" as this MultiFab. The division is done only to num_comp components, starting with component number strt_comp. The parameter nghost specifies the number of boundary cells that will be modified. If nghost == 0, only the valid region of each FArrayBox will be modified. Note, nothing is done to protect against divide by zero. """ def divide( self, src: iMultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Divide self by src including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ def dm(self: FabArrayBase) -> DistributionMapping: ... def imesh(self, idir, include_ghosts=False): """ Returns the integer mesh along the specified direction with the appropriate centering. This is the location of the data points in grid cell units. Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX direction : integer Zero based direction number. In a typical Cartesian case, 0 would be 'x' direction. include_ghosts : bool, default=False Whether or not ghost cells are included in the mesh. """ @typing.overload def max( self, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> int: """ Returns the maximum value of the specified component of the (i)MultiFab. """ @typing.overload def max( self, region: Box, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> int: """ Returns the maximum value of the specified component of the (i)MultiFab over the region. """ def maxIndex( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> IntVect3D: ... @typing.overload def min( self, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> int: """ Returns the minimum value of the specified component of the (i)MultiFab. """ @typing.overload def min( self, region: Box, comp: typing.SupportsInt = 0, nghost: typing.SupportsInt = 0, local: bool = False, ) -> int: """ Returns the minimum value of the specified component of the (i)MultiFab over the region. """ def minIndex( self, arg0: typing.SupportsInt, arg1: typing.SupportsInt ) -> IntVect3D: ... def minus( self, mf: iMultiFab, strt_comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ This function subtracts the values of the cells in mf from the corresponding cells of this MultiFab. mf is required to have the same BoxArray or "valid region" as this MultiFab. The subtraction is done only to num_comp components, starting with component number strt_comp. The parameter nghost specifies the number of boundary cells that will be modified. If nghost == 0, only the valid region of each FArrayBox will be modified. """ @typing.overload def mult(self, val: typing.SupportsInt, nghost: typing.SupportsInt = 0) -> None: """ Scales the value of each cell in the valid region of each component of the MultiFab by the scalar val (a[i] <- a[i]*val). The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def mult( self, val: typing.SupportsInt, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Scales the value of each cell in the specified subregion of the MultiFab by the scalar val (a[i] <- a[i]*val). The subregion consists of the num_comp components starting at component comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def mult( self, val: typing.SupportsInt, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of mult(), with the restriction that the subregion is further constrained to the intersection with Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def mult( self, val: typing.SupportsInt, region: Box, nghost: typing.SupportsInt = 0 ) -> None: """ Scales the value of each cell in the valid region of each component of the MultiFab by the scalar val (a[i] <- a[i]*val), that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ def multiply( self, src: iMultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Multiply self by src including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def negate(self, nghost: typing.SupportsInt = 0) -> None: """ Negates the value of each cell in the valid region of the MultiFab. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def negate( self, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Negates the value of each cell in the specified subregion of the MultiFab. The subregion consists of the num_comp components starting at component comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def negate(self, region: Box, nghost: typing.SupportsInt = 0) -> None: """ Negates the value of each cell in the valid region of the MultiFab that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def negate( self, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of negate(), with the restriction that the subregion is further constrained to the intersection with Box region. """ @typing.overload def plus(self, val: typing.SupportsInt, nghost: typing.SupportsInt = 0) -> None: """ Adds the scalar value val to the value of each cell in the valid region of each component of the MultiFab. The value of nghost specifies the number of cells in the boundary region that should be modified. """ @typing.overload def plus( self, val: typing.SupportsInt, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Adds the scalar value \\p val to the value of each cell in the specified subregion of the MultiFab. The subregion consists of the \\p num_comp components starting at component \\p comp. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def plus( self, val: typing.SupportsInt, region: Box, nghost: typing.SupportsInt = 0 ) -> None: """ Adds the scalar value val to the value of each cell in the valid region of each component of the MultiFab, that also intersects the Box region. The value of nghost specifies the number of cells in the boundary region of each FArrayBox in the subregion that should be modified. """ @typing.overload def plus( self, val: typing.SupportsInt, region: Box, comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ Identical to the previous version of plus(), with the restriction that the subregion is further constrained to the intersection with Box region. """ @typing.overload def plus( self, mf: iMultiFab, strt_comp: typing.SupportsInt, num_comp: typing.SupportsInt, nghost: typing.SupportsInt = 0, ) -> None: """ This function adds the values of the cells in mf to the corresponding cells of this MultiFab. mf is required to have the same BoxArray or "valid region" as this MultiFab. The addition is done only to num_comp components, starting with component number strt_comp. The parameter nghost specifies the number of boundary cells that will be modified. If nghost == 0, only the valid region of each FArrayBox will be modified. """ def subtract( self, src: iMultiFab, srccomp: typing.SupportsInt, comp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: """ Subtract src from self including nghost ghost cells. The two MultiFabs MUST have the same underlying BoxArray. """ @typing.overload def sum(self, comp: typing.SupportsInt = 0, local: bool = False) -> int: """ Returns the sum of component 'comp' over the (i)MultiFab -- no ghost cells are included. """ @typing.overload def sum( self, region: Box, comp: typing.SupportsInt = 0, local: bool = False ) -> int: """ Returns the sum of component 'comp' in the given 'region'. -- no ghost cells are included. """ def to_cupy(self, copy=False, order="F"): """ Provide a CuPy view into a MultiFab. This includes ngrow guard cells of each box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- list of cupy.array A list of CuPy n-dimensional arrays, for each local block in the MultiFab. Raises ------ ImportError Raises an exception if cupy is not installed """ def to_numpy(self, copy=False, order="F"): """ Provide a NumPy view into a MultiFab. This includes ngrow guard cells of each box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- list of numpy.array A list of NumPy n-dimensional arrays, for each local block in the MultiFab. """ def to_xp(self, copy=False, order="F"): """ Provide a NumPy or CuPy view into a MultiFab, depending on amr.Config.have_gpu . This function is similar to CuPy's xp naming suggestion for CPU/GPU agnostic code: https://docs.cupy.dev/en/stable/user_guide/basic.html#how-to-write-cpu-gpu-agnostic-code This includes ngrow guard cells of each box. Note on the order of indices: By default, this is as in AMReX in Fortran contiguous order, indexing as x,y,z. This has performance implications for use in external libraries such as cupy. The order="C" option will index as z,y,x and perform better with cupy. https://github.com/AMReX-Codes/pyamrex/issues/55#issuecomment-1579610074 Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX copy : bool, optional Copy the data if true, otherwise create a view (default). order : string, optional F order (default) or C. C is faster with external libraries. Returns ------- list of xp.array A list of NumPy or CuPy n-dimensional arrays, for each local block in the MultiFab. """ @property def n_comp(self) -> int: ... @property def n_grow_vect(self) -> IntVect3D: ... @property def shape(self, include_ghosts=False): """ Returns the shape of the global array Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX include_ghosts : bool, default=False Whether or not ghost cells are included """ @property def shape_with_ghosts(self): """ Returns the shape of the global array including ghost cells Parameters ---------- self : amrex.MultiFab A MultiFab class in pyAMReX """
[docs] def AlmostEqual(rb1: RealBox, rb2: RealBox, eps: typing.SupportsFloat = 0.0) -> bool: """ Determine if two boxes are equal to within a tolerance """
def MPMD_AppNum() -> int: ... def MPMD_Finalize() -> None: ... def MPMD_Initialize_without_split(arg0: list) -> None: ... def MPMD_Initialized() -> bool: ... def MPMD_MyProc() -> int: ... def MPMD_MyProgId() -> int: ... def MPMD_NProcs() -> int: ... def The_Arena() -> Arena: ... def The_Async_Arena() -> Arena: ... def The_Cpu_Arena() -> Arena: ... def The_Device_Arena() -> Arena: ... def The_Managed_Arena() -> Arena: ... def The_Pinned_Arena() -> Arena: ... def almost_equal( x: typing.SupportsFloat, y: typing.SupportsFloat, ulp: typing.SupportsInt = 2 ) -> bool: ... def begin(arg0: Box) -> Dim3: ... @typing.overload def coarsen(arg0: IntVect1D, arg1: IntVect1D) -> IntVect1D: ... @typing.overload def coarsen(arg0: Dim3, arg1: IntVect1D) -> Dim3: ... @typing.overload def coarsen(arg0: IntVect1D, arg1: typing.SupportsInt) -> IntVect1D: ... @typing.overload def coarsen(arg0: IntVect2D, arg1: IntVect2D) -> IntVect2D: ... @typing.overload def coarsen(arg0: Dim3, arg1: IntVect2D) -> Dim3: ... @typing.overload def coarsen(arg0: IntVect2D, arg1: typing.SupportsInt) -> IntVect2D: ... @typing.overload def coarsen(arg0: IntVect3D, arg1: IntVect3D) -> IntVect3D: ... @typing.overload def coarsen(arg0: Dim3, arg1: IntVect3D) -> Dim3: ... @typing.overload def coarsen(arg0: IntVect3D, arg1: typing.SupportsInt) -> IntVect3D: ...
[docs] def concatenate( root: str, num: typing.SupportsInt, mindigits: typing.SupportsInt = 5 ) -> str: """ Builds plotfile name """
@typing.overload def copy_mfab( dst: iMultiFab, src: iMultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: ... @typing.overload def copy_mfab( dst: iMultiFab, src: iMultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: ... @typing.overload def copy_mfab( dst: MultiFab, src: MultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: typing.SupportsInt, ) -> None: ... @typing.overload def copy_mfab( dst: MultiFab, src: MultiFab, srccomp: typing.SupportsInt, dstcomp: typing.SupportsInt, numcomp: typing.SupportsInt, nghost: IntVect3D, ) -> None: ... @typing.overload def dtoh_memcpy(dest: FabArray_FArrayBox, src: FabArray_FArrayBox) -> None: """ Copy from a device to host FabArray. """ @typing.overload def dtoh_memcpy( dest: FabArray_FArrayBox, src: FabArray_FArrayBox, scomp: typing.SupportsInt, dcomp: typing.SupportsInt, ncomp: typing.SupportsInt, ) -> None: """ Copy from a device to host FabArray for a specific (number of) component(s). """ def end(arg0: Box) -> Dim3: ... @typing.overload def finalize() -> None: ... @typing.overload def finalize(arg0: AMReX) -> None: ... @typing.overload def htod_memcpy(dest: FabArray_FArrayBox, src: FabArray_FArrayBox) -> None: """ Copy from a host to device FabArray. """ @typing.overload def htod_memcpy( dest: FabArray_FArrayBox, src: FabArray_FArrayBox, scomp: typing.SupportsInt, dcomp: typing.SupportsInt, ncomp: typing.SupportsInt, ) -> None: """ Copy from a host to device FabArray for a specific (number of) component(s). """
[docs] def initialize(arg0: list) -> AMReX: """ Initialize AMReX library """
def initialize_when_MPMD(arg0: list, arg1: typing.Any) -> AMReX: ...
[docs] def initialized() -> bool: """ Returns true if there are any currently-active and initialized AMReX instances (i.e. one for which amrex::Initialize has been called, and amrex::Finalize has not). Otherwise false. """
def is_valid(arg0: typing.SupportsInt) -> bool: ... @typing.overload def lbound(arg0: Box) -> Dim3: ... @typing.overload def lbound(arg0: Array4_float) -> Dim3: ... @typing.overload def lbound(arg0: Array4_double) -> Dim3: ... @typing.overload def lbound(arg0: Array4_longdouble) -> Dim3: ... @typing.overload def lbound(arg0: Array4_float_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_double_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_longdouble_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_cfloat) -> Dim3: ... @typing.overload def lbound(arg0: Array4_cdouble) -> Dim3: ... @typing.overload def lbound(arg0: Array4_cfloat_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_cdouble_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_short) -> Dim3: ... @typing.overload def lbound(arg0: Array4_int) -> Dim3: ... @typing.overload def lbound(arg0: Array4_long) -> Dim3: ... @typing.overload def lbound(arg0: Array4_longlong) -> Dim3: ... @typing.overload def lbound(arg0: Array4_short_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_int_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_long_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_longlong_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_ushort) -> Dim3: ... @typing.overload def lbound(arg0: Array4_uint) -> Dim3: ... @typing.overload def lbound(arg0: Array4_ulong) -> Dim3: ... @typing.overload def lbound(arg0: Array4_ulonglong) -> Dim3: ... @typing.overload def lbound(arg0: Array4_ushort_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_uint_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_ulong_const) -> Dim3: ... @typing.overload def lbound(arg0: Array4_ulonglong_const) -> Dim3: ... @typing.overload def length(arg0: Box) -> Dim3: ... @typing.overload def length(arg0: Array4_float) -> Dim3: ... @typing.overload def length(arg0: Array4_double) -> Dim3: ... @typing.overload def length(arg0: Array4_longdouble) -> Dim3: ... @typing.overload def length(arg0: Array4_float_const) -> Dim3: ... @typing.overload def length(arg0: Array4_double_const) -> Dim3: ... @typing.overload def length(arg0: Array4_longdouble_const) -> Dim3: ... @typing.overload def length(arg0: Array4_cfloat) -> Dim3: ... @typing.overload def length(arg0: Array4_cdouble) -> Dim3: ... @typing.overload def length(arg0: Array4_cfloat_const) -> Dim3: ... @typing.overload def length(arg0: Array4_cdouble_const) -> Dim3: ... @typing.overload def length(arg0: Array4_short) -> Dim3: ... @typing.overload def length(arg0: Array4_int) -> Dim3: ... @typing.overload def length(arg0: Array4_long) -> Dim3: ... @typing.overload def length(arg0: Array4_longlong) -> Dim3: ... @typing.overload def length(arg0: Array4_short_const) -> Dim3: ... @typing.overload def length(arg0: Array4_int_const) -> Dim3: ... @typing.overload def length(arg0: Array4_long_const) -> Dim3: ... @typing.overload def length(arg0: Array4_longlong_const) -> Dim3: ... @typing.overload def length(arg0: Array4_ushort) -> Dim3: ... @typing.overload def length(arg0: Array4_uint) -> Dim3: ... @typing.overload def length(arg0: Array4_ulong) -> Dim3: ... @typing.overload def length(arg0: Array4_ulonglong) -> Dim3: ... @typing.overload def length(arg0: Array4_ushort_const) -> Dim3: ... @typing.overload def length(arg0: Array4_uint_const) -> Dim3: ... @typing.overload def length(arg0: Array4_ulong_const) -> Dim3: ... @typing.overload def length(arg0: Array4_ulonglong_const) -> Dim3: ... def make_invalid(arg0: typing.SupportsInt) -> int: ... def make_valid(arg0: typing.SupportsInt) -> int: ...
[docs] def max(arg0: RealVect, arg1: RealVect) -> RealVect: ...
[docs] def min(arg0: RealVect, arg1: RealVect) -> RealVect: ...
def pack_cpus( arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64], arg1: typing.Annotated[numpy.typing.ArrayLike, numpy.int32], ) -> typing.Any: ... def pack_ids( arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64], arg1: typing.Annotated[numpy.typing.ArrayLike, numpy.int64], ) -> typing.Any: ... @typing.overload def refine(arg0: Dim3, arg1: IntVect1D) -> Dim3: ... @typing.overload def refine(arg0: Dim3, arg1: IntVect2D) -> Dim3: ... @typing.overload def refine(arg0: Dim3, arg1: IntVect3D) -> Dim3: ...
[docs] def size() -> int: """ The amr stack size, the number of amr instances pushed. """
@typing.overload def ubound(arg0: Box) -> Dim3: ... @typing.overload def ubound(arg0: Array4_float) -> Dim3: ... @typing.overload def ubound(arg0: Array4_double) -> Dim3: ... @typing.overload def ubound(arg0: Array4_longdouble) -> Dim3: ... @typing.overload def ubound(arg0: Array4_float_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_double_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_longdouble_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_cfloat) -> Dim3: ... @typing.overload def ubound(arg0: Array4_cdouble) -> Dim3: ... @typing.overload def ubound(arg0: Array4_cfloat_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_cdouble_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_short) -> Dim3: ... @typing.overload def ubound(arg0: Array4_int) -> Dim3: ... @typing.overload def ubound(arg0: Array4_long) -> Dim3: ... @typing.overload def ubound(arg0: Array4_longlong) -> Dim3: ... @typing.overload def ubound(arg0: Array4_short_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_int_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_long_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_longlong_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_ushort) -> Dim3: ... @typing.overload def ubound(arg0: Array4_uint) -> Dim3: ... @typing.overload def ubound(arg0: Array4_ulong) -> Dim3: ... @typing.overload def ubound(arg0: Array4_ulonglong) -> Dim3: ... @typing.overload def ubound(arg0: Array4_ushort_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_uint_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_ulong_const) -> Dim3: ... @typing.overload def ubound(arg0: Array4_ulonglong_const) -> Dim3: ... def unpack_cpus( arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64], ) -> typing.Any: ... def unpack_ids( arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint64], ) -> typing.Any: ...
[docs] def write_single_level_plotfile( plotfilename: str, mf: MultiFab, varnames: Vector_string, geom: Geometry, time: typing.SupportsFloat, level_step: typing.SupportsInt, versionName: str = "HyperCLaw-V1.1", levelPrefix: str = "Level_", mfPrefix: str = "Cell", extra_dirs: Vector_string = ..., ) -> None: """ Writes single level plotfile """
__author__: str = "Axel Huebl, Ryan T. Sandberg, Shreyas Ananthan, David P. Grote, Revathi Jambunathan, Edoardo Zoni, Remi Lehe, Andrew Myers, Weiqun Zhang" __license__: str = "BSD-3-Clause-LBNL" __version__: str = "25.10-24-g428537425149" IntVect = IntVect3D